From 8bcdee86585f496afe1a8a38d608ea0504a11243 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 01 Sep 2015 18:22:03 +0000
Subject: [PATCH] Some bug fixes, random stuff

---
 src/coco.c |  279 ++++++++++++++++++++++++++++++++++++++++++++++++-------
 1 files changed, 244 insertions(+), 35 deletions(-)

diff --git a/src/coco.c b/src/coco.c
index d2a108a..62ae429 100644
--- a/src/coco.c
+++ b/src/coco.c
@@ -17,7 +17,7 @@
 
 void draw_coco(image im, float *pred, int side, char *label)
 {
-    int classes = 81;
+    int classes = 1;
     int elems = 4+classes;
     int j;
     int r, c;
@@ -26,10 +26,9 @@
         for(c = 0; c < side; ++c){
             j = (r*side + c) * elems;
             int class = max_index(pred+j, classes);
-            if (class == 0) continue;
             if (pred[j+class] > 0.2){
                 int width = pred[j+class]*5 + 1;
-                printf("%f %s\n", pred[j+class], coco_classes[class-1]);
+                printf("%f %s\n", pred[j+class], "object"); //coco_classes[class-1]);
                 float red = get_color(0,class,classes);
                 float green = get_color(1,class,classes);
                 float blue = get_color(2,class,classes);
@@ -37,10 +36,10 @@
                 j += classes;
 
                 box predict = {pred[j+0], pred[j+1], pred[j+2], pred[j+3]};
-                box anchor = {(c+.5)/side, (r+.5)/side, .5, .5};
-                box decode = decode_box(predict, anchor);
+                predict.x = (predict.x+c)/side;
+                predict.y = (predict.y+r)/side;
                 
-                draw_bbox(im, decode, width, red, green, blue);
+                draw_bbox(im, predict, width, red, green, blue);
             }
         }
     }
@@ -49,7 +48,8 @@
 
 void train_coco(char *cfgfile, char *weightfile)
 {
-    char *train_images = "/home/pjreddie/data/coco/train.txt";
+    //char *train_images = "/home/pjreddie/data/coco/train.txt";
+    char *train_images = "/home/pjreddie/data/voc/test/train.txt";
     char *backup_directory = "/home/pjreddie/backup/";
     srand(time(0));
     data_seed = time(0);
@@ -65,8 +65,11 @@
     int i = net.seen/imgs;
     data train, buffer;
 
-    int classes = 81;
-    int side = 7;
+
+    layer l = net.layers[net.n - 1];
+
+    int side = l.side;
+    int classes = l.classes;
 
     list *plist = get_paths(train_images);
     int N = plist->size;
@@ -95,9 +98,9 @@
         printf("Loaded: %lf seconds\n", sec(clock()-time));
 
 /*
-        image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
+        image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
         image copy = copy_image(im);
-        draw_coco(copy, train.y.vals[114], 7, "truth");
+        draw_coco(copy, train.y.vals[113], 7, "truth");
         cvWaitKey(0);
         free_image(copy);
         */
@@ -109,12 +112,19 @@
         avg_loss = avg_loss*.9 + loss*.1;
 
         printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
-        if((i-1)*imgs <= 80*N && i*imgs > N*80){
-            fprintf(stderr, "First stage done.\n");
+        if((i-1)*imgs <= N && i*imgs > N){
+            fprintf(stderr, "First stage done\n");
+            net.learning_rate *= 10;
             char buff[256];
             sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base);
             save_weights(net, buff);
-            return;
+        }
+
+        if((i-1)*imgs <= 80*N && i*imgs > N*80){
+            fprintf(stderr, "Second stage done.\n");
+            char buff[256];
+            sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base);
+            save_weights(net, buff);
         }
         if(i%1000==0){
             char buff[256];
@@ -128,25 +138,52 @@
     save_weights(net, buff);
 }
 
-void convert_cocos(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes)
+void get_probs(float *predictions, int total, int classes, int inc, float **probs)
 {
     int i,j;
-    int per_box = 4+classes+(background || objectness);
-    for (i = 0; i < num_boxes*num_boxes; ++i){
-        float scale = 1;
-        if(objectness) scale = 1-predictions[i*per_box];
-        int offset = i*per_box+(background||objectness);
+    for (i = 0; i < total; ++i){
+        int index = i*inc;
+        float scale = predictions[index];
+        probs[i][0] = scale;
         for(j = 0; j < classes; ++j){
-            float prob = scale*predictions[offset+j];
+            probs[i][j] = scale*predictions[index+j+1];
+        }
+    }
+}
+void get_boxes(float *predictions, int n, int num_boxes, int per_box, box *boxes)
+{
+    int i,j;
+    for (i = 0; i < num_boxes*num_boxes; ++i){
+        for(j = 0; j < n; ++j){
+            int index = i*n+j;
+            int offset = index*per_box;
+            int row = i / num_boxes;
+            int col = i % num_boxes;
+            boxes[index].x = (predictions[offset + 0] + col) / num_boxes;
+            boxes[index].y = (predictions[offset + 1] + row) / num_boxes;
+            boxes[index].w = predictions[offset + 2];
+            boxes[index].h = predictions[offset + 3];
+        }
+    }
+}
+
+void convert_cocos(float *predictions, int classes, int num_boxes, int num, int w, int h, float thresh, float **probs, box *boxes)
+{
+    int i,j;
+    int per_box = 4+classes;
+    for (i = 0; i < num_boxes*num_boxes*num; ++i){
+        int offset = i*per_box;
+        for(j = 0; j < classes; ++j){
+            float prob = predictions[offset+j];
             probs[i][j] = (prob > thresh) ? prob : 0;
         }
         int row = i / num_boxes;
         int col = i % num_boxes;
         offset += classes;
-        boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w;
-        boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h;
-        boxes[i].w = pow(predictions[offset + 2], 2) * w;
-        boxes[i].h = pow(predictions[offset + 3], 2) * h;
+        boxes[i].x = (predictions[offset + 0] + col) / num_boxes;
+        boxes[i].y = (predictions[offset + 1] + row) / num_boxes;
+        boxes[i].w = predictions[offset + 2];
+        boxes[i].h = predictions[offset + 3];
     }
 }
 
@@ -181,6 +218,179 @@
     return atoi(p+1);
 }
 
+void validate_recall(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    char *val_images = "/home/pjreddie/data/voc/test/2007_test.txt";
+    list *plist = get_paths(val_images);
+    char **paths = (char **)list_to_array(plist);
+
+    layer l = net.layers[net.n - 1];
+
+    int num_boxes = l.side;
+    int num = l.n;
+    int classes = l.classes;
+
+    int j;
+
+    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
+    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
+    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
+
+    int N = plist->size;
+    int i=0;
+    int k;
+
+    float iou_thresh = .5;
+    float thresh = .1;
+    int total = 0;
+    int correct = 0;
+    float avg_iou = 0;
+    int nms = 0;
+    int proposals = 0;
+
+    for (i = 0; i < N; ++i) {
+        char *path = paths[i];
+        image orig = load_image_color(path, 0, 0);
+        image resized = resize_image(orig, net.w, net.h);
+
+        float *X = resized.data;
+        float *predictions = network_predict(net, X);
+        get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
+        get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
+        if (nms) do_nms(boxes, probs, num*num_boxes*num_boxes, (classes>0) ? classes : 1, iou_thresh);
+
+        char *labelpath = find_replace(path, "images", "labels");
+        labelpath = find_replace(labelpath, "JPEGImages", "labels");
+        labelpath = find_replace(labelpath, ".jpg", ".txt");
+        labelpath = find_replace(labelpath, ".JPEG", ".txt");
+
+        int num_labels = 0;
+        box_label *truth = read_boxes(labelpath, &num_labels);
+        for(k = 0; k < num_boxes*num_boxes*num; ++k){
+            if(probs[k][0] > thresh){
+                ++proposals;
+            }
+        }
+        for (j = 0; j < num_labels; ++j) {
+            ++total;
+            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
+            float best_iou = 0;
+            for(k = 0; k < num_boxes*num_boxes*num; ++k){
+                float iou = box_iou(boxes[k], t);
+                if(probs[k][0] > thresh && iou > best_iou){
+                    best_iou = iou;
+                }
+            }
+            avg_iou += best_iou;
+            if(best_iou > iou_thresh){
+                ++correct;
+            }
+        }
+        free(truth);
+        free_image(orig);
+        free_image(resized);
+        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
+    }
+}
+
+void extract_boxes(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    char *val_images = "/home/pjreddie/data/voc/test/train.txt";
+    list *plist = get_paths(val_images);
+    char **paths = (char **)list_to_array(plist);
+
+    layer l = net.layers[net.n - 1];
+
+    int num_boxes = l.side;
+    int num = l.n;
+    int classes = l.classes;
+
+    int j;
+
+    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
+    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
+    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
+
+    int N = plist->size;
+    int i=0;
+    int k;
+
+    int count = 0;
+    float iou_thresh = .1;
+
+    for (i = 0; i < N; ++i) {
+        fprintf(stderr, "%5d %5d\n", i, count);
+        char *path = paths[i];
+        image orig = load_image_color(path, 0, 0);
+        image resized = resize_image(orig, net.w, net.h);
+
+        float *X = resized.data;
+        float *predictions = network_predict(net, X);
+        get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
+        get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
+
+        char *labelpath = find_replace(path, "images", "labels");
+        labelpath = find_replace(labelpath, "JPEGImages", "labels");
+        labelpath = find_replace(labelpath, ".jpg", ".txt");
+        labelpath = find_replace(labelpath, ".JPEG", ".txt");
+
+        int num_labels = 0;
+        box_label *truth = read_boxes(labelpath, &num_labels);
+        FILE *label = stdin;
+        for(k = 0; k < num_boxes*num_boxes*num; ++k){
+            int overlaps = 0;
+            for (j = 0; j < num_labels; ++j) {
+                box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
+                float iou = box_iou(boxes[k], t);
+                if (iou > iou_thresh){
+                    if (!overlaps) {
+                        char buff[256];
+                        sprintf(buff, "/home/pjreddie/extracted/labels/%d.txt", count);
+                        label = fopen(buff, "w");
+                        overlaps = 1;
+                    }
+                    fprintf(label, "%d %f\n", truth[j].id, iou);
+                }
+            }
+            if (overlaps) {
+                char buff[256];
+                sprintf(buff, "/home/pjreddie/extracted/imgs/%d", count++);
+                int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
+                int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
+                int w = boxes[k].w * orig.w;
+                int h = boxes[k].h * orig.h;
+                image cropped = crop_image(orig, dx, dy, w, h);
+                image sized = resize_image(cropped, 224, 224);
+                #ifdef OPENCV
+                save_image_jpg(sized, buff);
+                #endif
+                free_image(sized);
+                free_image(cropped);
+                fclose(label);
+            }
+        }
+        free(truth);
+        free_image(orig);
+        free_image(resized);
+    }
+}
+
 void validate_coco(char *cfgfile, char *weightfile)
 {
     network net = parse_network_cfg(cfgfile);
@@ -188,7 +398,6 @@
         load_weights(&net, weightfile);
     }
     set_batch_network(&net, 1);
-    detection_layer layer = get_network_detection_layer(net);
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     srand(time(0));
 
@@ -196,10 +405,9 @@
     list *plist = get_paths("data/coco_val_5k.list");
     char **paths = (char **)list_to_array(plist);
 
-    int classes = layer.classes;
-    int objectness = layer.objectness;
-    int background = layer.background;
-    int num_boxes = sqrt(get_detection_layer_locations(layer));
+    int num_boxes = 9;
+    int num = 4;
+    int classes = 1;
 
     int j;
     char buff[1024];
@@ -207,9 +415,9 @@
     FILE *fp = fopen(buff, "w");
     fprintf(fp, "[\n");
 
-    box *boxes = calloc(num_boxes*num_boxes, sizeof(box));
-    float **probs = calloc(num_boxes*num_boxes, sizeof(float *));
-    for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *));
+    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
+    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
+    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes, sizeof(float *));
 
     int m = plist->size;
     int i=0;
@@ -257,7 +465,7 @@
             float *predictions = network_predict(net, X);
             int w = val[t].w;
             int h = val[t].h;
-            convert_cocos(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes);
+            convert_cocos(predictions, classes, num_boxes, num, w, h, thresh, probs, boxes);
             if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
             print_cocos(fp, image_id, boxes, probs, num_boxes, classes, w, h);
             free_image(val[t]);
@@ -319,5 +527,6 @@
     char *filename = (argc > 5) ? argv[5]: 0;
     if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename);
     else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
-    else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
+    else if(0==strcmp(argv[2], "extract")) extract_boxes(cfg, weights);
+    else if(0==strcmp(argv[2], "valid")) validate_recall(cfg, weights);
 }

--
Gitblit v1.10.0