From 8e7a51a4925977acde34daffe9ea1fcffd8aae47 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Wed, 18 Oct 2017 23:56:38 +0000
Subject: [PATCH] circleci: opencv

---
 src/convolutional_layer.c |  239 +++++++++++++++++++++++++++++++----------------------------
 1 files changed, 125 insertions(+), 114 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index ad2d8a5..a3247d0 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -8,6 +8,10 @@
 #include <stdio.h>
 #include <time.h>
 
+#ifdef CUDNN
+#pragma comment(lib, "cudnn.lib")  
+#endif
+
 #ifdef AI2
 #include "xnor_layer.h"
 #endif
@@ -19,28 +23,28 @@
 
 void swap_binary(convolutional_layer *l)
 {
-    float *swap = l->filters;
-    l->filters = l->binary_filters;
-    l->binary_filters = swap;
+    float *swap = l->weights;
+    l->weights = l->binary_weights;
+    l->binary_weights = swap;
 
     #ifdef GPU
-    swap = l->filters_gpu;
-    l->filters_gpu = l->binary_filters_gpu;
-    l->binary_filters_gpu = swap;
+    swap = l->weights_gpu;
+    l->weights_gpu = l->binary_weights_gpu;
+    l->binary_weights_gpu = swap;
     #endif
 }
 
-void binarize_filters(float *filters, int n, int size, float *binary)
+void binarize_weights(float *weights, int n, int size, float *binary)
 {
     int i, f;
     for(f = 0; f < n; ++f){
         float mean = 0;
         for(i = 0; i < size; ++i){
-            mean += fabs(filters[f*size + i]);
+            mean += fabs(weights[f*size + i]);
         }
         mean = mean / size;
         for(i = 0; i < size; ++i){
-            binary[f*size + i] = (filters[f*size + i] > 0) ? mean : -mean;
+            binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean;
         }
     }
 }
@@ -103,7 +107,7 @@
         size_t s = 0;
         cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
                 l.srcTensorDesc,
-                l.filterDesc,
+                l.weightDesc,
                 l.convDesc,
                 l.dstTensorDesc,
                 l.fw_algo,
@@ -113,12 +117,12 @@
                 l.srcTensorDesc,
                 l.ddstTensorDesc,
                 l.convDesc,
-                l.dfilterDesc,
+                l.dweightDesc,
                 l.bf_algo,
                 &s);
         if (s > most) most = s;
         cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
-                l.filterDesc,
+                l.weightDesc,
                 l.ddstTensorDesc,
                 l.convDesc,
                 l.dsrcTensorDesc,
@@ -137,22 +141,26 @@
 {
     cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
     cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
-    cudnnSetFilter4dDescriptor(l->dfilterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); 
+    cudnnSetFilter4dDescriptor(l->dweightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); 
 
     cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
     cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
-    cudnnSetFilter4dDescriptor(l->filterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); 
-    cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);
-    cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
+    cudnnSetFilter4dDescriptor(l->weightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); 
+#if(CUDNN_MAJOR >= 6)
+	cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT);	// cudnn 6.0
+#else
+	cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);	// cudnn 5.1
+#endif
+	cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
             l->srcTensorDesc,
-            l->filterDesc,
+            l->weightDesc,
             l->convDesc,
             l->dstTensorDesc,
             CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
             0,
             &l->fw_algo);
     cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
-            l->filterDesc,
+            l->weightDesc,
             l->ddstTensorDesc,
             l->convDesc,
             l->dsrcTensorDesc,
@@ -163,7 +171,7 @@
             l->srcTensorDesc,
             l->ddstTensorDesc,
             l->convDesc,
-            l->dfilterDesc,
+            l->dweightDesc,
             CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
             0,
             &l->bf_algo);
@@ -171,7 +179,7 @@
 #endif
 #endif
 
-convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor)
+convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam)
 {
     int i;
     convolutional_layer l = {0};
@@ -189,15 +197,15 @@
     l.pad = padding;
     l.batch_normalize = batch_normalize;
 
-    l.filters = calloc(c*n*size*size, sizeof(float));
-    l.filter_updates = calloc(c*n*size*size, sizeof(float));
+    l.weights = calloc(c*n*size*size, sizeof(float));
+    l.weight_updates = calloc(c*n*size*size, sizeof(float));
 
     l.biases = calloc(n, sizeof(float));
     l.bias_updates = calloc(n, sizeof(float));
 
     // float scale = 1./sqrt(size*size*c);
     float scale = sqrt(2./(size*size*c));
-    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_uniform(-1, 1);
+    for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1, 1);
     int out_h = convolutional_out_height(l);
     int out_w = convolutional_out_width(l);
     l.out_h = out_h;
@@ -206,16 +214,19 @@
     l.outputs = l.out_h * l.out_w * l.out_c;
     l.inputs = l.w * l.h * l.c;
 
-    l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
-    l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));
+    l.output = calloc(l.batch*l.outputs, sizeof(float));
+    l.delta  = calloc(l.batch*l.outputs, sizeof(float));
 
+    l.forward = forward_convolutional_layer;
+    l.backward = backward_convolutional_layer;
+    l.update = update_convolutional_layer;
     if(binary){
-        l.binary_filters = calloc(c*n*size*size, sizeof(float));
-        l.cfilters = calloc(c*n*size*size, sizeof(char));
+        l.binary_weights = calloc(c*n*size*size, sizeof(float));
+        l.cweights = calloc(c*n*size*size, sizeof(char));
         l.scales = calloc(n, sizeof(float));
     }
     if(xnor){
-        l.binary_filters = calloc(c*n*size*size, sizeof(float));
+        l.binary_weights = calloc(c*n*size*size, sizeof(float));
         l.binary_input = calloc(l.inputs*l.batch, sizeof(float));
     }
 
@@ -229,29 +240,45 @@
         l.mean = calloc(n, sizeof(float));
         l.variance = calloc(n, sizeof(float));
 
+        l.mean_delta = calloc(n, sizeof(float));
+        l.variance_delta = calloc(n, sizeof(float));
+
         l.rolling_mean = calloc(n, sizeof(float));
         l.rolling_variance = calloc(n, sizeof(float));
+        l.x = calloc(l.batch*l.outputs, sizeof(float));
+        l.x_norm = calloc(l.batch*l.outputs, sizeof(float));
+    }
+    if(adam){
+        l.adam = 1;
+        l.m = calloc(c*n*size*size, sizeof(float));
+        l.v = calloc(c*n*size*size, sizeof(float));
     }
 
 #ifdef GPU
+    l.forward_gpu = forward_convolutional_layer_gpu;
+    l.backward_gpu = backward_convolutional_layer_gpu;
+    l.update_gpu = update_convolutional_layer_gpu;
+
     if(gpu_index >= 0){
-        l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
-        l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
+        if (adam) {
+            l.m_gpu = cuda_make_array(l.m, c*n*size*size);
+            l.v_gpu = cuda_make_array(l.v, c*n*size*size);
+        }
+
+        l.weights_gpu = cuda_make_array(l.weights, c*n*size*size);
+        l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size);
 
         l.biases_gpu = cuda_make_array(l.biases, n);
         l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
 
-        l.scales_gpu = cuda_make_array(l.scales, n);
-        l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
-
         l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
         l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
 
         if(binary){
-            l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+            l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size);
         }
         if(xnor){
-            l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+            l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size);
             l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
         }
 
@@ -265,16 +292,19 @@
             l.mean_delta_gpu = cuda_make_array(l.mean, n);
             l.variance_delta_gpu = cuda_make_array(l.variance, n);
 
+            l.scales_gpu = cuda_make_array(l.scales, n);
+            l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
+
             l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
             l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
         }
 #ifdef CUDNN
         cudnnCreateTensorDescriptor(&l.srcTensorDesc);
         cudnnCreateTensorDescriptor(&l.dstTensorDesc);
-        cudnnCreateFilterDescriptor(&l.filterDesc);
+        cudnnCreateFilterDescriptor(&l.weightDesc);
         cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
         cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
-        cudnnCreateFilterDescriptor(&l.dfilterDesc);
+        cudnnCreateFilterDescriptor(&l.dweightDesc);
         cudnnCreateConvolutionDescriptor(&l.convDesc);
         cudnn_convolutional_setup(&l);
 #endif
@@ -283,7 +313,7 @@
     l.workspace_size = get_workspace_size(l);
     l.activation = activation;
 
-    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
+    fprintf(stderr, "conv  %5d %2d x%2d /%2d  %4d x%4d x%4d   ->  %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
 
     return l;
 }
@@ -294,7 +324,7 @@
     for(i = 0; i < l.n; ++i){
         float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
         for(j = 0; j < l.c*l.size*l.size; ++j){
-            l.filters[i*l.c*l.size*l.size + j] *= scale;
+            l.weights[i*l.c*l.size*l.size + j] *= scale;
         }
         l.biases[i] -= l.rolling_mean[i] * scale;
         l.scales[i] = 1;
@@ -305,7 +335,7 @@
 
 void test_convolutional_layer()
 {
-    convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0);
+    convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0, 0);
     l.batch_normalize = 1;
     float data[] = {1,1,1,1,1,
         1,1,1,1,1,
@@ -340,17 +370,27 @@
     l->outputs = l->out_h * l->out_w * l->out_c;
     l->inputs = l->w * l->h * l->c;
 
-    l->output = realloc(l->output,
-            l->batch*out_h * out_w * l->n*sizeof(float));
-    l->delta  = realloc(l->delta,
-            l->batch*out_h * out_w * l->n*sizeof(float));
+    l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
+    l->delta  = realloc(l->delta,  l->batch*l->outputs*sizeof(float));
+    if(l->batch_normalize){
+        l->x = realloc(l->x, l->batch*l->outputs*sizeof(float));
+        l->x_norm  = realloc(l->x_norm, l->batch*l->outputs*sizeof(float));
+    }
 
 #ifdef GPU
     cuda_free(l->delta_gpu);
     cuda_free(l->output_gpu);
 
-    l->delta_gpu =     cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
-    l->output_gpu =    cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
+    l->delta_gpu =  cuda_make_array(l->delta,  l->batch*l->outputs);
+    l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+
+    if(l->batch_normalize){
+        cuda_free(l->x_gpu);
+        cuda_free(l->x_norm_gpu);
+
+        l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+        l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+    }
 #ifdef CUDNN
     cudnn_convolutional_setup(l);
 #endif
@@ -398,43 +438,10 @@
     int out_w = convolutional_out_width(l);
     int i;
 
-
     fill_cpu(l.outputs*l.batch, 0, l.output, 1);
 
-    /*
-       if(l.binary){
-       binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
-       binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales);
-       swap_binary(&l);
-       }
-     */
-
-    /*
-       if(l.binary){
-       int m = l.n;
-       int k = l.size*l.size*l.c;
-       int n = out_h*out_w;
-
-       char  *a = l.cfilters;
-       float *b = state.workspace;
-       float *c = l.output;
-
-       for(i = 0; i < l.batch; ++i){
-       im2col_cpu(state.input, l.c, l.h, l.w, 
-       l.size, l.stride, l.pad, b);
-       gemm_bin(m,n,k,1,a,k,b,n,c,n);
-       c += n*m;
-       state.input += l.c*l.h*l.w;
-       }
-       scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
-       add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
-       activate_array(l.output, m*n*l.batch, l.activation);
-       return;
-       }
-     */
-
     if(l.xnor){
-        binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
+        binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights);
         swap_binary(&l);
         binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input);
         state.input = l.binary_input;
@@ -444,22 +451,17 @@
     int k = l.size*l.size*l.c;
     int n = out_h*out_w;
 
-    if (l.xnor && l.c%32 == 0 && AI2) {
-        forward_xnor_layer(l, state);
-        printf("xnor\n");
-    } else {
 
-        float *a = l.filters;
-        float *b = state.workspace;
-        float *c = l.output;
+    float *a = l.weights;
+    float *b = state.workspace;
+    float *c = l.output;
 
-        for(i = 0; i < l.batch; ++i){
-            im2col_cpu(state.input, l.c, l.h, l.w, 
-                    l.size, l.stride, l.pad, b);
-            gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-            c += n*m;
-            state.input += l.c*l.h*l.w;
-        }
+    for(i = 0; i < l.batch; ++i){
+        im2col_cpu(state.input, l.c, l.h, l.w, 
+                l.size, l.stride, l.pad, b);
+        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+        c += n*m;
+        state.input += l.c*l.h*l.w;
     }
 
     if(l.batch_normalize){
@@ -482,10 +484,14 @@
     gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
     backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
 
+    if(l.batch_normalize){
+        backward_batchnorm_layer(l, state);
+    }
+
     for(i = 0; i < l.batch; ++i){
         float *a = l.delta + i*m*k;
         float *b = state.workspace;
-        float *c = l.filter_updates;
+        float *c = l.weight_updates;
 
         float *im = state.input+i*l.c*l.h*l.w;
 
@@ -494,7 +500,7 @@
         gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
 
         if(state.delta){
-            a = l.filters;
+            a = l.weights;
             b = l.delta + i*m*k;
             c = state.workspace;
 
@@ -511,36 +517,41 @@
     axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
     scal_cpu(l.n, momentum, l.bias_updates, 1);
 
-    axpy_cpu(size, -decay*batch, l.filters, 1, l.filter_updates, 1);
-    axpy_cpu(size, learning_rate/batch, l.filter_updates, 1, l.filters, 1);
-    scal_cpu(size, momentum, l.filter_updates, 1);
+    if(l.scales){
+        axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1);
+        scal_cpu(l.n, momentum, l.scale_updates, 1);
+    }
+
+    axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1);
+    axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
+    scal_cpu(size, momentum, l.weight_updates, 1);
 }
 
 
-image get_convolutional_filter(convolutional_layer l, int i)
+image get_convolutional_weight(convolutional_layer l, int i)
 {
     int h = l.size;
     int w = l.size;
     int c = l.c;
-    return float_to_image(w,h,c,l.filters+i*h*w*c);
+    return float_to_image(w,h,c,l.weights+i*h*w*c);
 }
 
-void rgbgr_filters(convolutional_layer l)
+void rgbgr_weights(convolutional_layer l)
 {
     int i;
     for(i = 0; i < l.n; ++i){
-        image im = get_convolutional_filter(l, i);
+        image im = get_convolutional_weight(l, i);
         if (im.c == 3) {
             rgbgr_image(im);
         }
     }
 }
 
-void rescale_filters(convolutional_layer l, float scale, float trans)
+void rescale_weights(convolutional_layer l, float scale, float trans)
 {
     int i;
     for(i = 0; i < l.n; ++i){
-        image im = get_convolutional_filter(l, i);
+        image im = get_convolutional_weight(l, i);
         if (im.c == 3) {
             scale_image(im, scale);
             float sum = sum_array(im.data, im.w*im.h*im.c);
@@ -549,21 +560,21 @@
     }
 }
 
-image *get_filters(convolutional_layer l)
+image *get_weights(convolutional_layer l)
 {
-    image *filters = calloc(l.n, sizeof(image));
+    image *weights = calloc(l.n, sizeof(image));
     int i;
     for(i = 0; i < l.n; ++i){
-        filters[i] = copy_image(get_convolutional_filter(l, i));
-        //normalize_image(filters[i]);
+        weights[i] = copy_image(get_convolutional_weight(l, i));
+        //normalize_image(weights[i]);
     }
-    return filters;
+    return weights;
 }
 
-image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_filters)
+image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights)
 {
-    image *single_filters = get_filters(l);
-    show_images(single_filters, l.n, window);
+    image *single_weights = get_weights(l);
+    show_images(single_weights, l.n, window);
 
     image delta = get_convolutional_image(l);
     image dc = collapse_image_layers(delta, 1);
@@ -572,6 +583,6 @@
     //show_image(dc, buff);
     //save_image(dc, buff);
     free_image(dc);
-    return single_filters;
+    return single_weights;
 }
 

--
Gitblit v1.10.0