From 8f1b4e0962857d402f9d017fcbf387ef0eceb7c4 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 01 Sep 2016 23:48:41 +0000
Subject: [PATCH] updates and things

---
 src/classifier.c |  686 +++++++++++++++++++++++++++++++++++++++++++++++++++++++-
 1 files changed, 664 insertions(+), 22 deletions(-)

diff --git a/src/classifier.c b/src/classifier.c
index ddd88b1..e59f7ae 100644
--- a/src/classifier.c
+++ b/src/classifier.c
@@ -2,6 +2,10 @@
 #include "utils.h"
 #include "parser.h"
 #include "option_list.h"
+#include "blas.h"
+#include "assert.h"
+#include "classifier.h"
+#include <sys/time.h>
 
 #ifdef OPENCV
 #include "opencv2/highgui/highgui_c.h"
@@ -35,8 +39,23 @@
     return options;
 }
 
-void train_classifier(char *datacfg, char *cfgfile, char *weightfile)
+float *get_regression_values(char **labels, int n)
 {
+    float *v = calloc(n, sizeof(float));
+    int i;
+    for(i = 0; i < n; ++i){
+        char *p = strchr(labels[i], ' ');
+        *p = 0;
+        v[i] = atof(p+1);
+    }
+    return v;
+}
+
+void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
+{
+    int nthreads = 8;
+    int i;
+
     data_seed = time(0);
     srand(time(0));
     float avg_loss = -1;
@@ -46,8 +65,10 @@
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    if(clear) *net.seen = 0;
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = 1024;
+    int imgs = net.batch*net.subdivisions/nthreads;
+    assert(net.batch*net.subdivisions % nthreads == 0);
 
     list *options = read_data_cfg(datacfg);
 
@@ -62,43 +83,78 @@
     printf("%d\n", plist->size);
     int N = plist->size;
     clock_t time;
-    pthread_t load_thread;
-    data train;
-    data buffer;
+
+    pthread_t *load_threads = calloc(nthreads, sizeof(pthread_t));
+    data *trains  = calloc(nthreads, sizeof(data));
+    data *buffers = calloc(nthreads, sizeof(data));
 
     load_args args = {0};
     args.w = net.w;
     args.h = net.h;
+
+    args.min = net.min_crop;
+    args.max = net.max_crop;
+    args.angle = net.angle;
+    args.exposure = net.exposure;
+    args.saturation = net.saturation;
+    args.hue = net.hue;
+    args.size = net.w;
+
     args.paths = paths;
     args.classes = classes;
     args.n = imgs;
     args.m = N;
     args.labels = labels;
-    args.d = &buffer;
     args.type = CLASSIFICATION_DATA;
 
-    load_thread = load_data_in_thread(args);
+    for(i = 0; i < nthreads; ++i){
+        args.d = buffers + i;
+        load_threads[i] = load_data_in_thread(args);
+    }
+
     int epoch = (*net.seen)/N;
     while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
         time=clock();
-        pthread_join(load_thread, 0);
-        train = buffer;
+        for(i = 0; i < nthreads; ++i){
+            pthread_join(load_threads[i], 0);
+            trains[i] = buffers[i];
+        }
+        data train = concat_datas(trains, nthreads);
 
-        load_thread = load_data_in_thread(args);
+        for(i = 0; i < nthreads; ++i){
+            args.d = buffers + i;
+            load_threads[i] = load_data_in_thread(args);
+        }
+
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
+
+        #ifdef OPENCV
+        if(0){
+            int u;
+            for(u = 0; u < imgs; ++u){
+                image im = float_to_image(net.w, net.h, 3, train.X.vals[u]);
+                show_image(im, "loaded");
+                cvWaitKey(0);
+            }
+        }
+        #endif
+
         float loss = train_network(net, train);
         if(avg_loss == -1) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
         free_data(train);
+        for(i = 0; i < nthreads; ++i){
+            free_data(trains[i]);
+        }
         if(*net.seen/N > epoch){
             epoch = *net.seen/N;
             char buff[256];
             sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
             save_weights(net, buff);
         }
-        if(*net.seen%1000 == 0){
+        if(get_current_batch(net)%100 == 0){
             char buff[256];
             sprintf(buff, "%s/%s.backup",backup_directory,base);
             save_weights(net, buff);
@@ -108,8 +164,14 @@
     sprintf(buff, "%s/%s.weights", backup_directory, base);
     save_weights(net, buff);
 
-    pthread_join(load_thread, 0);
-    free_data(buffer);
+    for(i = 0; i < nthreads; ++i){
+        pthread_join(load_threads[i], 0);
+        free_data(buffers[i]);
+    }
+    free(buffers);
+    free(trains);
+    free(load_threads);
+
     free_network(net);
     free_ptrs((void**)labels, classes);
     free_ptrs((void**)paths, plist->size);
@@ -117,7 +179,7 @@
     free(base);
 }
 
-void validate_classifier(char *datacfg, char *filename, char *weightfile)
+void validate_classifier_crop(char *datacfg, char *filename, char *weightfile)
 {
     int i = 0;
     network net = parse_network_cfg(filename);
@@ -151,13 +213,14 @@
     load_args args = {0};
     args.w = net.w;
     args.h = net.h;
+
     args.paths = paths;
     args.classes = classes;
     args.n = num;
     args.m = 0;
     args.labels = labels;
     args.d = &buffer;
-    args.type = CLASSIFICATION_DATA;
+    args.type = OLD_CLASSIFICATION_DATA;
 
     pthread_t load_thread = load_data_in_thread(args);
     for(i = 1; i <= splits; ++i){
@@ -183,7 +246,260 @@
     }
 }
 
-void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename)
+void validate_classifier_10(char *datacfg, char *filename, char *weightfile)
+{
+    int i, j;
+    network net = parse_network_cfg(filename);
+    set_batch_network(&net, 1);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    list *options = read_data_cfg(datacfg);
+
+    char *label_list = option_find_str(options, "labels", "data/labels.list");
+    char *valid_list = option_find_str(options, "valid", "data/train.list");
+    int classes = option_find_int(options, "classes", 2);
+    int topk = option_find_int(options, "top", 1);
+
+    char **labels = get_labels(label_list);
+    list *plist = get_paths(valid_list);
+
+    char **paths = (char **)list_to_array(plist);
+    int m = plist->size;
+    free_list(plist);
+
+    float avg_acc = 0;
+    float avg_topk = 0;
+    int *indexes = calloc(topk, sizeof(int));
+
+    for(i = 0; i < m; ++i){
+        int class = -1;
+        char *path = paths[i];
+        for(j = 0; j < classes; ++j){
+            if(strstr(path, labels[j])){
+                class = j;
+                break;
+            }
+        }
+        int w = net.w;
+        int h = net.h;
+        int shift = 32;
+        image im = load_image_color(paths[i], w+shift, h+shift);
+        image images[10];
+        images[0] = crop_image(im, -shift, -shift, w, h);
+        images[1] = crop_image(im, shift, -shift, w, h);
+        images[2] = crop_image(im, 0, 0, w, h);
+        images[3] = crop_image(im, -shift, shift, w, h);
+        images[4] = crop_image(im, shift, shift, w, h);
+        flip_image(im);
+        images[5] = crop_image(im, -shift, -shift, w, h);
+        images[6] = crop_image(im, shift, -shift, w, h);
+        images[7] = crop_image(im, 0, 0, w, h);
+        images[8] = crop_image(im, -shift, shift, w, h);
+        images[9] = crop_image(im, shift, shift, w, h);
+        float *pred = calloc(classes, sizeof(float));
+        for(j = 0; j < 10; ++j){
+            float *p = network_predict(net, images[j].data);
+            axpy_cpu(classes, 1, p, 1, pred, 1);
+            free_image(images[j]);
+        }
+        free_image(im);
+        top_k(pred, classes, topk, indexes);
+        free(pred);
+        if(indexes[0] == class) avg_acc += 1;
+        for(j = 0; j < topk; ++j){
+            if(indexes[j] == class) avg_topk += 1;
+        }
+
+        printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
+    }
+}
+
+void validate_classifier_full(char *datacfg, char *filename, char *weightfile)
+{
+    int i, j;
+    network net = parse_network_cfg(filename);
+    set_batch_network(&net, 1);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    list *options = read_data_cfg(datacfg);
+
+    char *label_list = option_find_str(options, "labels", "data/labels.list");
+    char *valid_list = option_find_str(options, "valid", "data/train.list");
+    int classes = option_find_int(options, "classes", 2);
+    int topk = option_find_int(options, "top", 1);
+
+    char **labels = get_labels(label_list);
+    list *plist = get_paths(valid_list);
+
+    char **paths = (char **)list_to_array(plist);
+    int m = plist->size;
+    free_list(plist);
+
+    float avg_acc = 0;
+    float avg_topk = 0;
+    int *indexes = calloc(topk, sizeof(int));
+
+    int size = net.w;
+    for(i = 0; i < m; ++i){
+        int class = -1;
+        char *path = paths[i];
+        for(j = 0; j < classes; ++j){
+            if(strstr(path, labels[j])){
+                class = j;
+                break;
+            }
+        }
+        image im = load_image_color(paths[i], 0, 0);
+        image resized = resize_min(im, size);
+        resize_network(&net, resized.w, resized.h);
+        //show_image(im, "orig");
+        //show_image(crop, "cropped");
+        //cvWaitKey(0);
+        float *pred = network_predict(net, resized.data);
+
+        free_image(im);
+        free_image(resized);
+        top_k(pred, classes, topk, indexes);
+
+        if(indexes[0] == class) avg_acc += 1;
+        for(j = 0; j < topk; ++j){
+            if(indexes[j] == class) avg_topk += 1;
+        }
+
+        printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
+    }
+}
+
+
+void validate_classifier_single(char *datacfg, char *filename, char *weightfile)
+{
+    int i, j;
+    network net = parse_network_cfg(filename);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    srand(time(0));
+
+    list *options = read_data_cfg(datacfg);
+
+    char *label_list = option_find_str(options, "labels", "data/labels.list");
+    char *valid_list = option_find_str(options, "valid", "data/train.list");
+    int classes = option_find_int(options, "classes", 2);
+    int topk = option_find_int(options, "top", 1);
+
+    char **labels = get_labels(label_list);
+    list *plist = get_paths(valid_list);
+
+    char **paths = (char **)list_to_array(plist);
+    int m = plist->size;
+    free_list(plist);
+
+    float avg_acc = 0;
+    float avg_topk = 0;
+    int *indexes = calloc(topk, sizeof(int));
+
+    for(i = 0; i < m; ++i){
+        int class = -1;
+        char *path = paths[i];
+        for(j = 0; j < classes; ++j){
+            if(strstr(path, labels[j])){
+                class = j;
+                break;
+            }
+        }
+        image im = load_image_color(paths[i], 0, 0);
+        image resized = resize_min(im, net.w);
+        image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h);
+        //show_image(im, "orig");
+        //show_image(crop, "cropped");
+        //cvWaitKey(0);
+        float *pred = network_predict(net, crop.data);
+
+        if(resized.data != im.data) free_image(resized);
+        free_image(im);
+        free_image(crop);
+        top_k(pred, classes, topk, indexes);
+
+        if(indexes[0] == class) avg_acc += 1;
+        for(j = 0; j < topk; ++j){
+            if(indexes[j] == class) avg_topk += 1;
+        }
+
+        printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
+    }
+}
+
+void validate_classifier_multi(char *datacfg, char *filename, char *weightfile)
+{
+    int i, j;
+    network net = parse_network_cfg(filename);
+    set_batch_network(&net, 1);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    list *options = read_data_cfg(datacfg);
+
+    char *label_list = option_find_str(options, "labels", "data/labels.list");
+    char *valid_list = option_find_str(options, "valid", "data/train.list");
+    int classes = option_find_int(options, "classes", 2);
+    int topk = option_find_int(options, "top", 1);
+
+    char **labels = get_labels(label_list);
+    list *plist = get_paths(valid_list);
+    int scales[] = {224, 288, 320, 352, 384};
+    int nscales = sizeof(scales)/sizeof(scales[0]);
+
+    char **paths = (char **)list_to_array(plist);
+    int m = plist->size;
+    free_list(plist);
+
+    float avg_acc = 0;
+    float avg_topk = 0;
+    int *indexes = calloc(topk, sizeof(int));
+
+    for(i = 0; i < m; ++i){
+        int class = -1;
+        char *path = paths[i];
+        for(j = 0; j < classes; ++j){
+            if(strstr(path, labels[j])){
+                class = j;
+                break;
+            }
+        }
+        float *pred = calloc(classes, sizeof(float));
+        image im = load_image_color(paths[i], 0, 0);
+        for(j = 0; j < nscales; ++j){
+            image r = resize_min(im, scales[j]);
+            resize_network(&net, r.w, r.h);
+            float *p = network_predict(net, r.data);
+            axpy_cpu(classes, 1, p, 1, pred, 1);
+            flip_image(r);
+            p = network_predict(net, r.data);
+            axpy_cpu(classes, 1, p, 1, pred, 1);
+            if(r.data != im.data) free_image(r);
+        }
+        free_image(im);
+        top_k(pred, classes, topk, indexes);
+        free(pred);
+        if(indexes[0] == class) avg_acc += 1;
+        for(j = 0; j < topk; ++j){
+            if(indexes[j] == class) avg_topk += 1;
+        }
+
+        printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
+    }
+}
+
+void try_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int layer_num)
 {
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
@@ -214,10 +530,45 @@
             if(!input) return;
             strtok(input, "\n");
         }
-        image im = load_image_color(input, net.w, net.h);
+        image orig = load_image_color(input, 0, 0);
+        image r = resize_min(orig, 256);
+        image im = crop_image(r, (r.w - 224 - 1)/2 + 1, (r.h - 224 - 1)/2 + 1, 224, 224);
+        float mean[] = {0.48263312050943, 0.45230225481413, 0.40099074308742};
+        float std[] = {0.22590347483426, 0.22120921437787, 0.22103996251583};
+        float var[3];
+        var[0] = std[0]*std[0];
+        var[1] = std[1]*std[1];
+        var[2] = std[2]*std[2];
+
+        normalize_cpu(im.data, mean, var, 1, 3, im.w*im.h);
+
         float *X = im.data;
         time=clock();
         float *predictions = network_predict(net, X);
+        
+        layer l = net.layers[layer_num];
+        for(i = 0; i < l.c; ++i){
+        if(l.rolling_mean) printf("%f %f %f\n", l.rolling_mean[i], l.rolling_variance[i], l.scales[i]);
+        }
+        #ifdef GPU
+        cuda_pull_array(l.output_gpu, l.output, l.outputs);
+        #endif
+        for(i = 0; i < l.outputs; ++i){
+            printf("%f\n", l.output[i]);
+        }
+        /*
+        
+        printf("\n\nWeights\n");
+        for(i = 0; i < l.n*l.size*l.size*l.c; ++i){
+            printf("%f\n", l.filters[i]);
+        }
+
+        printf("\n\nBiases\n");
+        for(i = 0; i < l.n; ++i){
+            printf("%f\n", l.biases[i]);
+        }
+        */
+
         top_predictions(net, top, indexes);
         printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
         for(i = 0; i < top; ++i){
@@ -229,6 +580,99 @@
     }
 }
 
+
+void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    srand(2222222);
+
+    list *options = read_data_cfg(datacfg);
+
+    char *name_list = option_find_str(options, "names", 0);
+    if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
+    int top = option_find_int(options, "top", 1);
+
+    int i = 0;
+    char **names = get_labels(name_list);
+    clock_t time;
+    int *indexes = calloc(top, sizeof(int));
+    char buff[256];
+    char *input = buff;
+    int size = net.w;
+    while(1){
+        if(filename){
+            strncpy(input, filename, 256);
+        }else{
+            printf("Enter Image Path: ");
+            fflush(stdout);
+            input = fgets(input, 256, stdin);
+            if(!input) return;
+            strtok(input, "\n");
+        }
+        image im = load_image_color(input, 0, 0);
+        image r = resize_min(im, size);
+        resize_network(&net, r.w, r.h);
+        printf("%d %d\n", r.w, r.h);
+
+        float *X = r.data;
+        time=clock();
+        float *predictions = network_predict(net, X);
+        top_predictions(net, top, indexes);
+        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
+        for(i = 0; i < top; ++i){
+            int index = indexes[i];
+            printf("%s: %f\n", names[index], predictions[index]);
+        }
+        if(r.data != im.data) free_image(r);
+        free_image(im);
+        if (filename) break;
+    }
+}
+
+
+void label_classifier(char *datacfg, char *filename, char *weightfile)
+{
+    int i;
+    network net = parse_network_cfg(filename);
+    set_batch_network(&net, 1);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    list *options = read_data_cfg(datacfg);
+
+    char *label_list = option_find_str(options, "names", "data/labels.list");
+    char *test_list = option_find_str(options, "test", "data/train.list");
+    int classes = option_find_int(options, "classes", 2);
+
+    char **labels = get_labels(label_list);
+    list *plist = get_paths(test_list);
+
+    char **paths = (char **)list_to_array(plist);
+    int m = plist->size;
+    free_list(plist);
+
+    for(i = 0; i < m; ++i){
+        image im = load_image_color(paths[i], 0, 0);
+        image resized = resize_min(im, net.w);
+        image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h);
+        float *pred = network_predict(net, crop.data);
+
+        if(resized.data != im.data) free_image(resized);
+        free_image(im);
+        free_image(crop);
+        int ind = max_index(pred, classes);
+
+        printf("%s\n", labels[ind]);
+    }
+}
+
+
 void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer)
 {
     int curr = 0;
@@ -262,7 +706,7 @@
     args.m = 0;
     args.labels = 0;
     args.d = &buffer;
-    args.type = CLASSIFICATION_DATA;
+    args.type = OLD_CLASSIFICATION_DATA;
 
     pthread_t load_thread = load_data_in_thread(args);
     for(curr = net.batch; curr < m; curr += net.batch){
@@ -280,7 +724,7 @@
 
         time=clock();
         matrix pred = network_predict_data(net, val);
-        
+
         int i, j;
         if (target_layer >= 0){
             //layer l = net.layers[target_layer];
@@ -296,12 +740,200 @@
 
         free_matrix(pred);
 
-        fprintf(stderr, "%lf seconds, %d images\n", sec(clock()-time), val.X.rows);
+        fprintf(stderr, "%lf seconds, %d images, %d total\n", sec(clock()-time), val.X.rows, curr);
         free_data(val);
     }
 }
 
 
+void threat_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
+{
+#ifdef OPENCV
+    float threat = 0;
+    float roll = .2;
+
+    printf("Classifier Demo\n");
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    list *options = read_data_cfg(datacfg);
+
+    srand(2222222);
+    CvCapture * cap;
+
+    if(filename){
+        cap = cvCaptureFromFile(filename);
+    }else{
+        cap = cvCaptureFromCAM(cam_index);
+    }
+
+    int top = option_find_int(options, "top", 1);
+
+    char *name_list = option_find_str(options, "names", 0);
+    char **names = get_labels(name_list);
+
+    int *indexes = calloc(top, sizeof(int));
+
+    if(!cap) error("Couldn't connect to webcam.\n");
+    //cvNamedWindow("Threat", CV_WINDOW_NORMAL); 
+    //cvResizeWindow("Threat", 512, 512);
+    float fps = 0;
+    int i;
+
+    int count = 0;
+
+    while(1){
+        ++count;
+        struct timeval tval_before, tval_after, tval_result;
+        gettimeofday(&tval_before, NULL);
+
+        image in = get_image_from_stream(cap);
+        if(!in.data) break;
+        image in_s = resize_image(in, net.w, net.h);
+
+    image out = in;
+    int x1 = out.w / 20;
+    int y1 = out.h / 20;
+    int x2 = 2*x1;
+    int y2 = out.h - out.h/20;
+
+    int border = .01*out.h;
+    int h = y2 - y1 - 2*border;
+    int w = x2 - x1 - 2*border;
+
+        float *predictions = network_predict(net, in_s.data);
+        float curr_threat = predictions[0] * 0 + predictions[1] * .6 + predictions[2];
+        threat = roll * curr_threat + (1-roll) * threat;
+
+        draw_box_width(out, x2 + border, y1 + .02*h, x2 + .5 * w, y1 + .02*h + border, border, 0,0,0);
+        if(threat > .97) {
+            draw_box_width(out,  x2 + .5 * w + border,
+                    y1 + .02*h - 2*border, 
+                    x2 + .5 * w + 6*border, 
+                    y1 + .02*h + 3*border, 3*border, 1,0,0);
+        }
+        draw_box_width(out,  x2 + .5 * w + border,
+                y1 + .02*h - 2*border, 
+                x2 + .5 * w + 6*border, 
+                y1 + .02*h + 3*border, .5*border, 0,0,0);
+        draw_box_width(out, x2 + border, y1 + .42*h, x2 + .5 * w, y1 + .42*h + border, border, 0,0,0);
+        if(threat > .57) {
+        draw_box_width(out,  x2 + .5 * w + border,
+                y1 + .42*h - 2*border, 
+                x2 + .5 * w + 6*border, 
+                y1 + .42*h + 3*border, 3*border, 1,1,0);
+            }
+        draw_box_width(out,  x2 + .5 * w + border,
+                y1 + .42*h - 2*border, 
+                x2 + .5 * w + 6*border, 
+                y1 + .42*h + 3*border, .5*border, 0,0,0);
+
+        draw_box_width(out, x1, y1, x2, y2, border, 0,0,0);
+        for(i = 0; i < threat * h ; ++i){
+            float ratio = (float) i / h;
+            float r = (ratio < .5) ? (2*(ratio)) : 1;
+            float g = (ratio < .5) ? 1 : 1 - 2*(ratio - .5);
+            draw_box_width(out, x1 + border, y2 - border - i, x2 - border, y2 - border - i, 1, r, g, 0);
+        }
+        top_predictions(net, top, indexes);
+        char buff[256];
+        sprintf(buff, "/home/pjreddie/tmp/threat_%06d", count);
+        save_image(out, buff);
+
+        printf("\033[2J");
+        printf("\033[1;1H");
+        printf("\nFPS:%.0f\n",fps);
+
+        for(i = 0; i < top; ++i){
+            int index = indexes[i];
+            printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
+        }
+
+        if(0){
+            show_image(out, "Threat");
+            cvWaitKey(10);
+        }
+        free_image(in_s);
+        free_image(in);
+
+        gettimeofday(&tval_after, NULL);
+        timersub(&tval_after, &tval_before, &tval_result);
+        float curr = 1000000.f/((long int)tval_result.tv_usec);
+        fps = .9*fps + .1*curr;
+    }
+#endif
+}
+
+
+void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
+{
+#ifdef OPENCV
+    printf("Classifier Demo\n");
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    list *options = read_data_cfg(datacfg);
+
+    srand(2222222);
+    CvCapture * cap;
+
+    if(filename){
+        cap = cvCaptureFromFile(filename);
+    }else{
+        cap = cvCaptureFromCAM(cam_index);
+    }
+
+    int top = option_find_int(options, "top", 1);
+
+    char *name_list = option_find_str(options, "names", 0);
+    char **names = get_labels(name_list);
+
+    int *indexes = calloc(top, sizeof(int));
+
+    if(!cap) error("Couldn't connect to webcam.\n");
+    cvNamedWindow("Classifier", CV_WINDOW_NORMAL); 
+    cvResizeWindow("Classifier", 512, 512);
+    float fps = 0;
+    int i;
+
+    while(1){
+        struct timeval tval_before, tval_after, tval_result;
+        gettimeofday(&tval_before, NULL);
+
+        image in = get_image_from_stream(cap);
+        image in_s = resize_image(in, net.w, net.h);
+        show_image(in, "Classifier");
+
+        float *predictions = network_predict(net, in_s.data);
+        top_predictions(net, top, indexes);
+
+        printf("\033[2J");
+        printf("\033[1;1H");
+        printf("\nFPS:%.0f\n",fps);
+
+        for(i = 0; i < top; ++i){
+            int index = indexes[i];
+            printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
+        }
+
+        free_image(in_s);
+        free_image(in);
+
+        cvWaitKey(10);
+
+        gettimeofday(&tval_after, NULL);
+        timersub(&tval_after, &tval_before, &tval_result);
+        float curr = 1000000.f/((long int)tval_result.tv_usec);
+        fps = .9*fps + .1*curr;
+    }
+#endif
+}
+
+
 void run_classifier(int argc, char **argv)
 {
     if(argc < 4){
@@ -309,6 +941,8 @@
         return;
     }
 
+    int cam_index = find_int_arg(argc, argv, "-c", 0);
+    int clear = find_arg(argc, argv, "-clear");
     char *data = argv[3];
     char *cfg = argv[4];
     char *weights = (argc > 5) ? argv[5] : 0;
@@ -316,9 +950,17 @@
     char *layer_s = (argc > 7) ? argv[7]: 0;
     int layer = layer_s ? atoi(layer_s) : -1;
     if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
-    else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights);
+    else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s));
+    else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear);
+    else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);
+    else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename);
     else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
-    else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
+    else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights);
+    else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights);
+    else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights);
+    else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);
+    else if(0==strcmp(argv[2], "validcrop")) validate_classifier_crop(data, cfg, weights);
+    else if(0==strcmp(argv[2], "validfull")) validate_classifier_full(data, cfg, weights);
 }
 
 

--
Gitblit v1.10.0