From 8fd18add6e060a433629fae3fa2a7ef75df4644e Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 04 Nov 2015 03:23:42 +0000
Subject: [PATCH] CVPR Experiments
---
src/swag.c | 118 ++-
src/box.h | 1
Makefile | 3
src/classifier.c | 316 +++++++++
src/box.c | 47 +
src/convolutional_layer.h | 5
src/image.c | 6
src/coco.c | 480 +++++---------
src/imagenet.c | 1
src/blas.c | 45 +
src/convolutional_kernels.cu | 161 +++-
src/layer.h | 32 +
src/compare.c | 4
src/deconvolutional_kernels.cu | 3
src/network.h | 1
src/network_kernels.cu | 2
src/data.c | 4
src/blas.h | 18
src/region_layer.c | 5
src/swag_kernels.cu | 61 +
cfg/strided.cfg | 12
cfg/yolo.cfg | 179 +++--
src/convolutional_layer.c | 105 ++
src/parser.c | 26
src/crop_layer_kernels.cu | 15
src/blas_kernels.cu | 222 ++++++
src/darknet.c | 45 +
27 files changed, 1,426 insertions(+), 491 deletions(-)
diff --git a/Makefile b/Makefile
index 26c4076..2180094 100644
--- a/Makefile
+++ b/Makefile
@@ -3,6 +3,7 @@
DEBUG=0
ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20
+ARCH= -arch=sm_52 --use_fast_math
VPATH=./src/
EXEC=darknet
@@ -36,7 +37,7 @@
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o region_layer.o layer.o compare.o swag.o classifier.o
ifeq ($(GPU), 1)
-OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
+OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o swag_kernels.o
endif
OBJS = $(addprefix $(OBJDIR), $(OBJ))
diff --git a/cfg/strided.cfg b/cfg/strided.cfg
index 4fd71e8..a52700b 100644
--- a/cfg/strided.cfg
+++ b/cfg/strided.cfg
@@ -4,10 +4,16 @@
height=256
width=256
channels=3
-learning_rate=0.01
momentum=0.9
decay=0.0005
+learning_rate=0.01
+policy=steps
+scales=.1,.1,.1
+steps=200000,300000,400000
+max_batches=800000
+
+
[crop]
crop_height=224
crop_width=224
@@ -15,6 +21,7 @@
angle=0
saturation=1
exposure=1
+shift=.2
[convolutional]
filters=64
@@ -160,9 +167,6 @@
size=3
stride=2
-[dropout]
-probability=0.5
-
[connected]
output=4096
activation=ramp
diff --git a/cfg/yolo.cfg b/cfg/yolo.cfg
index 140de88..ee16726 100644
--- a/cfg/yolo.cfg
+++ b/cfg/yolo.cfg
@@ -1,210 +1,235 @@
[net]
batch=64
-subdivisions=4
+subdivisions=2
height=448
width=448
channels=3
-learning_rate=0.01
momentum=0.9
decay=0.0005
+learning_rate=0.001
policy=steps
-steps=20000
-scales=.1
-max_batches = 35000
+steps=100,200,300,400,500,600,700,20000,30000
+scales=2,2,1.25,1.25,1.25,1.25,1.03,.1,.1
+max_batches = 40000
[crop]
crop_width=448
crop_height=448
flip=0
angle=0
-saturation = 2
-exposure = 2
+saturation = 1.5
+exposure = 1.5
[convolutional]
filters=64
size=7
stride=2
pad=1
-activation=ramp
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
[convolutional]
filters=192
size=3
-stride=2
+stride=1
pad=1
-activation=ramp
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
[convolutional]
filters=128
size=1
stride=1
pad=1
-activation=ramp
+activation=leaky
[convolutional]
filters=256
size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
stride=2
-pad=1
-activation=ramp
-
-[convolutional]
-filters=128
-size=1
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=256
-size=3
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=128
-size=1
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=512
-size=3
-stride=2
-pad=1
-activation=ramp
[convolutional]
filters=256
size=1
stride=1
pad=1
-activation=ramp
+activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
-activation=ramp
+activation=leaky
[convolutional]
filters=256
size=1
stride=1
pad=1
-activation=ramp
+activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
-activation=ramp
+activation=leaky
[convolutional]
filters=256
size=1
stride=1
pad=1
-activation=ramp
+activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
-activation=ramp
+activation=leaky
[convolutional]
filters=256
size=1
stride=1
pad=1
-activation=ramp
+activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
-activation=ramp
-
-[convolutional]
-filters=256
-size=1
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=1024
-size=3
-stride=2
-pad=1
-activation=ramp
+activation=leaky
[convolutional]
filters=512
size=1
stride=1
pad=1
-activation=ramp
+activation=leaky
[convolutional]
filters=1024
size=3
stride=1
pad=1
-activation=ramp
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+#######
[convolutional]
size=3
stride=1
pad=1
filters=1024
-activation=ramp
+activation=leaky
[convolutional]
size=3
stride=2
pad=1
filters=1024
-activation=ramp
+activation=leaky
[convolutional]
size=3
stride=1
pad=1
filters=1024
-activation=ramp
+activation=leaky
[convolutional]
size=3
stride=1
pad=1
filters=1024
-activation=ramp
+activation=leaky
[connected]
output=4096
-activation=ramp
+activation=leaky
[dropout]
probability=.5
[connected]
-output=1225
-activation=logistic
+output= 1470
+activation=linear
-[detection]
+[region]
classes=20
coords=4
-rescore=0
-joint=0
-objectness=1
-background=0
+rescore=1
+side=7
+num=2
+softmax=0
+sqrt=1
+jitter=.2
+
+object_scale=1
+noobject_scale=.5
+class_scale=1
+coord_scale=5
diff --git a/src/blas.c b/src/blas.c
index 8d93dc7..3785937 100644
--- a/src/blas.c
+++ b/src/blas.c
@@ -1,6 +1,51 @@
#include "blas.h"
#include "math.h"
+void mean_cpu(float *x, int batch, int filters, int spatial, float *mean)
+{
+ float scale = 1./(batch * spatial);
+ int i,j,k;
+ for(i = 0; i < filters; ++i){
+ mean[i] = 0;
+ for(j = 0; j < batch; ++j){
+ for(k = 0; k < spatial; ++k){
+ int index = j*filters*spatial + i*spatial + k;
+ mean[i] += x[index];
+ }
+ }
+ mean[i] *= scale;
+ }
+}
+
+void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
+{
+ float scale = 1./(batch * spatial);
+ int i,j,k;
+ for(i = 0; i < filters; ++i){
+ variance[i] = 0;
+ for(j = 0; j < batch; ++j){
+ for(k = 0; k < spatial; ++k){
+ int index = j*filters*spatial + i*spatial + k;
+ variance[i] += pow((x[index] - mean[i]), 2);
+ }
+ }
+ variance[i] *= scale;
+ }
+}
+
+void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
+{
+ int b, f, i;
+ for(b = 0; b < batch; ++b){
+ for(f = 0; f < filters; ++f){
+ for(i = 0; i < spatial; ++i){
+ int index = b*filters*spatial + f*spatial + i;
+ x[index] = (x[index] - mean[f])/(sqrt(variance[f]));
+ }
+ }
+ }
+}
+
void const_cpu(int N, float ALPHA, float *X, int INCX)
{
int i;
diff --git a/src/blas.h b/src/blas.h
index 9909925..be7da00 100644
--- a/src/blas.h
+++ b/src/blas.h
@@ -16,6 +16,10 @@
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY);
void test_gpu_blas();
+void mean_cpu(float *x, int batch, int filters, int spatial, float *mean);
+void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
+void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
+
#ifdef GPU
void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY);
void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY);
@@ -26,6 +30,20 @@
void const_ongpu(int N, float ALPHA, float *X, int INCX);
void pow_ongpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
void mul_ongpu(int N, float *X, int INCX, float *Y, int INCY);
+void fill_ongpu(int N, float ALPHA, float * X, int INCX);
+void mean_gpu(float *x, int batch, int filters, int spatial, float *mean);
+void variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
+void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
+
+void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta);
+void variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta);
+void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta);
+
+void fast_mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *spatial_mean_delta, float *mean_delta);
+void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *spatial_variance_delta, float *variance_delta);
+
+void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *spatial_variance, float *variance);
+void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *spatial_mean, float *mean);
#endif
#endif
diff --git a/src/blas_kernels.cu b/src/blas_kernels.cu
index 0c89c47..b990ca3 100644
--- a/src/blas_kernels.cu
+++ b/src/blas_kernels.cu
@@ -4,6 +4,181 @@
#include "utils.h"
}
+__global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial)
+{
+ int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (index >= N) return;
+ int f = (index/spatial)%filters;
+
+ x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .00001f);
+}
+
+__global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
+{
+ int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (index >= N) return;
+ int f = (index/spatial)%filters;
+
+ delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
+}
+
+extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
+{
+ size_t N = batch*filters*spatial;
+ normalize_delta_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, mean_delta, variance_delta, batch, filters, spatial, delta);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
+{
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (i >= filters) return;
+ int j,k;
+ variance_delta[i] = 0;
+ for(j = 0; j < batch; ++j){
+ for(k = 0; k < spatial; ++k){
+ int index = j*filters*spatial + i*spatial + k;
+ variance_delta[i] += delta[index]*(x[index] - mean[i]);
+ }
+ }
+ variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
+}
+
+__global__ void spatial_variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *spatial_variance_delta)
+{
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (i >= batch*filters) return;
+ int f = i%filters;
+ int b = i/filters;
+
+ int k;
+ spatial_variance_delta[i] = 0;
+ for (k = 0; k < spatial; ++k) {
+ int index = b*filters*spatial + f*spatial + k;
+ spatial_variance_delta[i] += delta[index]*(x[index] - mean[f]);
+ }
+ spatial_variance_delta[i] *= -.5 * pow(variance[f] + .00001f, (float)(-3./2.));
+}
+
+extern "C" void variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
+{
+ variance_delta_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, delta, mean, variance, batch, filters, spatial, variance_delta);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void accumulate_kernel(float *x, int n, int groups, float *sum)
+{
+ int k;
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (i >= groups) return;
+ sum[i] = 0;
+ for(k = 0; k < n; ++k){
+ sum[i] += x[k*groups + i];
+ }
+}
+
+extern "C" void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *spatial_variance_delta, float *variance_delta)
+{
+ spatial_variance_delta_kernel<<<cuda_gridsize(filters*batch), BLOCK>>>(x, delta, mean, variance, batch, filters, spatial, spatial_variance_delta);
+ check_error(cudaPeekAtLastError());
+ accumulate_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_variance_delta, batch, filters, variance_delta);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void spatial_mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *spatial_mean_delta)
+{
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (i >= batch*filters) return;
+ int f = i%filters;
+ int b = i/filters;
+
+ int k;
+ spatial_mean_delta[i] = 0;
+ for (k = 0; k < spatial; ++k) {
+ int index = b*filters*spatial + f*spatial + k;
+ spatial_mean_delta[i] += delta[index];
+ }
+ spatial_mean_delta[i] *= (-1./sqrt(variance[f] + .00001f));
+}
+
+extern "C" void fast_mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *spatial_mean_delta, float *mean_delta)
+{
+ spatial_mean_delta_kernel<<<cuda_gridsize(filters*batch), BLOCK>>>(delta, variance, batch, filters, spatial, spatial_mean_delta);
+ check_error(cudaPeekAtLastError());
+ accumulate_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_mean_delta, batch, filters, mean_delta);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
+{
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (i >= filters) return;
+ int j,k;
+ mean_delta[i] = 0;
+ for (j = 0; j < batch; ++j) {
+ for (k = 0; k < spatial; ++k) {
+ int index = j*filters*spatial + i*spatial + k;
+ mean_delta[i] += delta[index];
+ }
+ }
+ mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
+}
+
+extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
+{
+ mean_delta_kernel<<<cuda_gridsize(filters), BLOCK>>>(delta, variance, batch, filters, spatial, mean_delta);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void mean_kernel(float *x, int batch, int filters, int spatial, float *mean)
+{
+ float scale = 1./(batch * spatial);
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (i >= filters) return;
+ int j,k;
+ mean[i] = 0;
+ for(j = 0; j < batch; ++j){
+ for(k = 0; k < spatial; ++k){
+ int index = j*filters*spatial + i*spatial + k;
+ mean[i] += x[index];
+ }
+ }
+ mean[i] *= scale;
+}
+
+__global__ void spatial_variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
+{
+ float scale = 1./(spatial*batch-1);
+ int k;
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (i >= batch*filters) return;
+ int f = i%filters;
+ int b = i/filters;
+
+ variance[i] = 0;
+ for(k = 0; k < spatial; ++k){
+ int index = b*filters*spatial + f*spatial + k;
+ variance[i] += pow((x[index] - mean[f]), 2);
+ }
+ variance[i] *= scale;
+}
+
+__global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
+{
+ float scale = 1./(batch * spatial);
+ int j,k;
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (i >= filters) return;
+ variance[i] = 0;
+ for(j = 0; j < batch; ++j){
+ for(k = 0; k < spatial; ++k){
+ int index = j*filters*spatial + i*spatial + k;
+ variance[i] += pow((x[index] - mean[i]), 2);
+ }
+ }
+ variance[i] *= scale;
+}
+
__global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@@ -28,6 +203,12 @@
if(i < N) X[i*INCX] *= ALPHA;
}
+__global__ void fill_kernel(int N, float ALPHA, float *X, int INCX)
+{
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if(i < N) X[i*INCX] = ALPHA;
+}
+
__global__ void mask_kernel(int n, float *x, float mask_num, float *mask)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@@ -46,6 +227,41 @@
if(i < N) Y[i*INCY] *= X[i*INCX];
}
+extern "C" void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
+{
+ size_t N = batch*filters*spatial;
+ normalize_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, batch, filters, spatial);
+ check_error(cudaPeekAtLastError());
+}
+
+extern "C" void mean_gpu(float *x, int batch, int filters, int spatial, float *mean)
+{
+ mean_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, batch, filters, spatial, mean);
+ check_error(cudaPeekAtLastError());
+}
+
+extern "C" void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *spatial_mean, float *mean)
+{
+ mean_kernel<<<cuda_gridsize(filters*batch), BLOCK>>>(x, 1, filters*batch, spatial, spatial_mean);
+ check_error(cudaPeekAtLastError());
+ mean_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_mean, batch, filters, 1, mean);
+ check_error(cudaPeekAtLastError());
+}
+
+extern "C" void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *spatial_variance, float *variance)
+{
+ spatial_variance_kernel<<<cuda_gridsize(batch*filters), BLOCK>>>(x, mean, batch, filters, spatial, spatial_variance);
+ check_error(cudaPeekAtLastError());
+ accumulate_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_variance, batch, filters, variance);
+ check_error(cudaPeekAtLastError());
+}
+
+extern "C" void variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
+{
+ variance_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, mean, batch, filters, spatial, variance);
+ check_error(cudaPeekAtLastError());
+}
+
extern "C" void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY)
{
axpy_ongpu_offset(N, ALPHA, X, 0, INCX, Y, 0, INCY);
@@ -97,3 +313,9 @@
scal_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
check_error(cudaPeekAtLastError());
}
+
+extern "C" void fill_ongpu(int N, float ALPHA, float * X, int INCX)
+{
+ fill_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
+ check_error(cudaPeekAtLastError());
+}
diff --git a/src/box.c b/src/box.c
index b99300d..9568599 100644
--- a/src/box.c
+++ b/src/box.c
@@ -1,6 +1,7 @@
#include "box.h"
#include <stdio.h>
#include <math.h>
+#include <stdlib.h>
box float_to_box(float *f)
{
@@ -229,6 +230,52 @@
return dd;
}
+typedef struct{
+ int index;
+ int class;
+ float **probs;
+} sortable_bbox;
+
+int nms_comparator(const void *pa, const void *pb)
+{
+ sortable_bbox a = *(sortable_bbox *)pa;
+ sortable_bbox b = *(sortable_bbox *)pb;
+ float diff = a.probs[a.index][b.class] - b.probs[b.index][b.class];
+ if(diff < 0) return 1;
+ else if(diff > 0) return -1;
+ return 0;
+}
+
+void do_nms_sort(box *boxes, float **probs, int total, int classes, float thresh)
+{
+ int i, j, k;
+ sortable_bbox *s = calloc(total, sizeof(sortable_bbox));
+
+ for(i = 0; i < total; ++i){
+ s[i].index = i;
+ s[i].class = 0;
+ s[i].probs = probs;
+ }
+
+ for(k = 0; k < classes; ++k){
+ for(i = 0; i < total; ++i){
+ s[i].class = k;
+ }
+ qsort(s, total, sizeof(sortable_bbox), nms_comparator);
+ for(i = 0; i < total; ++i){
+ if(probs[s[i].index][k] == 0) continue;
+ box a = boxes[s[i].index];
+ for(j = i+1; j < total; ++j){
+ box b = boxes[s[j].index];
+ if (box_iou(a, b) > thresh){
+ probs[s[j].index][k] = 0;
+ }
+ }
+ }
+ }
+ free(s);
+}
+
void do_nms(box *boxes, float **probs, int total, int classes, float thresh)
{
int i, j, k;
diff --git a/src/box.h b/src/box.h
index 9b57fb4..a5f8cee 100644
--- a/src/box.h
+++ b/src/box.h
@@ -14,6 +14,7 @@
float box_rmse(box a, box b);
dbox diou(box a, box b);
void do_nms(box *boxes, float **probs, int total, int classes, float thresh);
+void do_nms_sort(box *boxes, float **probs, int total, int classes, float thresh);
box decode_box(box b, box anchor);
box encode_box(box b, box anchor);
diff --git a/src/classifier.c b/src/classifier.c
new file mode 100644
index 0000000..e243965
--- /dev/null
+++ b/src/classifier.c
@@ -0,0 +1,316 @@
+#include "network.h"
+#include "utils.h"
+#include "parser.h"
+#include "option_list.h"
+
+#ifdef OPENCV
+#include "opencv2/highgui/highgui_c.h"
+#endif
+
+list *read_data_cfg(char *filename)
+{
+ FILE *file = fopen(filename, "r");
+ if(file == 0) file_error(filename);
+ char *line;
+ int nu = 0;
+ list *options = make_list();
+ while((line=fgetl(file)) != 0){
+ ++ nu;
+ strip(line);
+ switch(line[0]){
+ case '\0':
+ case '#':
+ case ';':
+ free(line);
+ break;
+ default:
+ if(!read_option(line, options)){
+ fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
+ free(line);
+ }
+ break;
+ }
+ }
+ fclose(file);
+ return options;
+}
+
+void train_classifier(char *datacfg, char *cfgfile, char *weightfile)
+{
+ data_seed = time(0);
+ srand(time(0));
+ float avg_loss = -1;
+ char *base = basecfg(cfgfile);
+ printf("%s\n", base);
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+ int imgs = 1024;
+
+ list *options = read_data_cfg(datacfg);
+
+ char *backup_directory = option_find_str(options, "backup", "/backup/");
+ char *label_list = option_find_str(options, "labels", "data/labels.list");
+ char *train_list = option_find_str(options, "train", "data/train.list");
+ int classes = option_find_int(options, "classes", 2);
+
+ char **labels = get_labels(label_list);
+ list *plist = get_paths(train_list);
+ char **paths = (char **)list_to_array(plist);
+ printf("%d\n", plist->size);
+ int N = plist->size;
+ clock_t time;
+ pthread_t load_thread;
+ data train;
+ data buffer;
+
+ load_args args = {0};
+ args.w = net.w;
+ args.h = net.h;
+ args.paths = paths;
+ args.classes = classes;
+ args.n = imgs;
+ args.m = N;
+ args.labels = labels;
+ args.d = &buffer;
+ args.type = CLASSIFICATION_DATA;
+
+ load_thread = load_data_in_thread(args);
+ int epoch = (*net.seen)/N;
+ while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
+ time=clock();
+ pthread_join(load_thread, 0);
+ train = buffer;
+
+ load_thread = load_data_in_thread(args);
+ printf("Loaded: %lf seconds\n", sec(clock()-time));
+ time=clock();
+ float loss = train_network(net, train);
+ if(avg_loss == -1) avg_loss = loss;
+ avg_loss = avg_loss*.9 + loss*.1;
+ printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
+ free_data(train);
+ if(*net.seen/N > epoch){
+ epoch = *net.seen/N;
+ char buff[256];
+ sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
+ save_weights(net, buff);
+ }
+ }
+ char buff[256];
+ sprintf(buff, "%s/%s.weights", backup_directory, base);
+ save_weights(net, buff);
+
+ pthread_join(load_thread, 0);
+ free_data(buffer);
+ free_network(net);
+ free_ptrs((void**)labels, classes);
+ free_ptrs((void**)paths, plist->size);
+ free_list(plist);
+ free(base);
+}
+
+void validate_classifier(char *datacfg, char *filename, char *weightfile)
+{
+ int i = 0;
+ network net = parse_network_cfg(filename);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ srand(time(0));
+
+ list *options = read_data_cfg(datacfg);
+
+ char *label_list = option_find_str(options, "labels", "data/labels.list");
+ char *valid_list = option_find_str(options, "valid", "data/train.list");
+ int classes = option_find_int(options, "classes", 2);
+ int topk = option_find_int(options, "topk", 1);
+
+ char **labels = get_labels(label_list);
+ list *plist = get_paths(valid_list);
+
+ char **paths = (char **)list_to_array(plist);
+ int m = plist->size;
+ free_list(plist);
+
+ clock_t time;
+ float avg_acc = 0;
+ float avg_topk = 0;
+ int splits = 50;
+ int num = (i+1)*m/splits - i*m/splits;
+
+ data val, buffer;
+
+ load_args args = {0};
+ args.w = net.w;
+ args.h = net.h;
+ args.paths = paths;
+ args.classes = classes;
+ args.n = num;
+ args.m = 0;
+ args.labels = labels;
+ args.d = &buffer;
+ args.type = CLASSIFICATION_DATA;
+
+ pthread_t load_thread = load_data_in_thread(args);
+ for(i = 1; i <= splits; ++i){
+ time=clock();
+
+ pthread_join(load_thread, 0);
+ val = buffer;
+
+ num = (i+1)*m/splits - i*m/splits;
+ char **part = paths+(i*m/splits);
+ if(i != splits){
+ args.paths = part;
+ load_thread = load_data_in_thread(args);
+ }
+ printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
+
+ time=clock();
+ float *acc = network_accuracies(net, val, topk);
+ avg_acc += acc[0];
+ avg_topk += acc[1];
+ printf("%d: top 1: %f, top %d: %f, %lf seconds, %d images\n", i, avg_acc/i, topk, avg_topk/i, sec(clock()-time), val.X.rows);
+ free_data(val);
+ }
+}
+
+void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename)
+{
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ set_batch_network(&net, 1);
+ srand(2222222);
+
+ list *options = read_data_cfg(datacfg);
+
+ char *label_list = option_find_str(options, "labels", "data/labels.list");
+ int top = option_find_int(options, "top", 1);
+
+ int i = 0;
+ char **names = get_labels(label_list);
+ clock_t time;
+ int indexes[10];
+ char buff[256];
+ char *input = buff;
+ while(1){
+ if(filename){
+ strncpy(input, filename, 256);
+ }else{
+ printf("Enter Image Path: ");
+ fflush(stdout);
+ input = fgets(input, 256, stdin);
+ if(!input) return;
+ strtok(input, "\n");
+ }
+ image im = load_image_color(input, 256, 256);
+ float *X = im.data;
+ time=clock();
+ float *predictions = network_predict(net, X);
+ top_predictions(net, top, indexes);
+ printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
+ for(i = 0; i < top; ++i){
+ int index = indexes[i];
+ printf("%s: %f\n", names[index], predictions[index]);
+ }
+ free_image(im);
+ if (filename) break;
+ }
+}
+
+void test_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int target_layer)
+{
+ int curr = 0;
+ network net = parse_network_cfg(filename);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ srand(time(0));
+
+ list *options = read_data_cfg(datacfg);
+
+ char *test_list = option_find_str(options, "test", "data/test.list");
+ char *label_list = option_find_str(options, "labels", "data/labels.list");
+ int classes = option_find_int(options, "classes", 2);
+
+ char **labels = get_labels(label_list);
+ list *plist = get_paths(test_list);
+
+ char **paths = (char **)list_to_array(plist);
+ int m = plist->size;
+ free_list(plist);
+
+ clock_t time;
+
+ data val, buffer;
+
+ load_args args = {0};
+ args.w = net.w;
+ args.h = net.h;
+ args.paths = paths;
+ args.classes = classes;
+ args.n = net.batch;
+ args.m = 0;
+ args.labels = labels;
+ args.d = &buffer;
+ args.type = CLASSIFICATION_DATA;
+
+ pthread_t load_thread = load_data_in_thread(args);
+ for(curr = net.batch; curr < m; curr += net.batch){
+ time=clock();
+
+ pthread_join(load_thread, 0);
+ val = buffer;
+
+ if(curr < m){
+ args.paths = paths + curr;
+ if (curr + net.batch > m) args.n = m - curr;
+ load_thread = load_data_in_thread(args);
+ }
+ fprintf(stderr, "Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
+
+ time=clock();
+ matrix pred = network_predict_data(net, val);
+
+ int i;
+ if (target_layer >= 0){
+ //layer l = net.layers[target_layer];
+ }
+
+ for(i = 0; i < val.X.rows; ++i){
+
+ }
+
+ free_matrix(pred);
+
+ fprintf(stderr, "%lf seconds, %d images\n", sec(clock()-time), val.X.rows);
+ free_data(val);
+ }
+}
+
+
+void run_classifier(int argc, char **argv)
+{
+ if(argc < 4){
+ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
+ return;
+ }
+
+ char *data = argv[3];
+ char *cfg = argv[4];
+ char *weights = (argc > 5) ? argv[5] : 0;
+ char *filename = (argc > 6) ? argv[6]: 0;
+ char *layer_s = (argc > 7) ? argv[7]: 0;
+ int layer = layer_s ? atoi(layer_s) : -1;
+ if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
+ else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights);
+ else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights,filename, layer);
+ else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
+}
+
+
diff --git a/src/coco.c b/src/coco.c
index f6b135f..e30eeb7 100644
--- a/src/coco.c
+++ b/src/coco.c
@@ -1,7 +1,7 @@
#include <stdio.h>
#include "network.h"
-#include "detection_layer.h"
+#include "region_layer.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
@@ -15,32 +15,27 @@
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
-void draw_coco(image im, float *pred, int side, char *label)
+void draw_coco(image im, int num, float thresh, box *boxes, float **probs, char *label)
{
- int classes = 1;
- int elems = 4+classes;
- int j;
- int r, c;
+ int classes = 80;
+ int i;
- for(r = 0; r < side; ++r){
- for(c = 0; c < side; ++c){
- j = (r*side + c) * elems;
- int class = max_index(pred+j, classes);
- if (pred[j+class] > 0.2){
- int width = pred[j+class]*5 + 1;
- printf("%f %s\n", pred[j+class], "object"); //coco_classes[class-1]);
- float red = get_color(0,class,classes);
- float green = get_color(1,class,classes);
- float blue = get_color(2,class,classes);
+ for(i = 0; i < num; ++i){
+ int class = max_index(probs[i], classes);
+ float prob = probs[i][class];
+ if(prob > thresh){
+ int width = sqrt(prob)*5 + 1;
+ printf("%f %s\n", prob, coco_classes[class]);
+ float red = get_color(0,class,classes);
+ float green = get_color(1,class,classes);
+ float blue = get_color(2,class,classes);
+ box b = boxes[i];
- j += classes;
-
- box predict = {pred[j+0], pred[j+1], pred[j+2], pred[j+3]};
- predict.x = (predict.x+c)/side;
- predict.y = (predict.y+r)/side;
-
- draw_bbox(im, predict, width, red, green, blue);
- }
+ int left = (b.x-b.w/2.)*im.w;
+ int right = (b.x+b.w/2.)*im.w;
+ int top = (b.y-b.h/2.)*im.h;
+ int bot = (b.y+b.h/2.)*im.h;
+ draw_box_width(im, left, top, right, bot, width, red, green, blue);
}
}
show_image(im, label);
@@ -48,8 +43,8 @@
void train_coco(char *cfgfile, char *weightfile)
{
- //char *train_images = "/home/pjreddie/data/coco/train.txt";
- char *train_images = "/home/pjreddie/data/voc/test/train.txt";
+ //char *train_images = "/home/pjreddie/data/voc/test/train.txt";
+ char *train_images = "/home/pjreddie/data/coco/train.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
data_seed = time(0);
@@ -61,7 +56,7 @@
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- int imgs = 128;
+ int imgs = net.batch*net.subdivisions;
int i = *net.seen/imgs;
data train, buffer;
@@ -70,9 +65,10 @@
int side = l.side;
int classes = l.classes;
+ float jitter = l.jitter;
list *plist = get_paths(train_images);
- int N = plist->size;
+ //int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
@@ -82,13 +78,15 @@
args.n = imgs;
args.m = plist->size;
args.classes = classes;
+ args.jitter = jitter;
args.num_boxes = side;
args.d = &buffer;
args.type = REGION_DATA;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
- while(i*imgs < N*120){
+ //while(i*imgs < N*120){
+ while(get_current_batch(net) < net.max_batches){
i += 1;
time=clock();
pthread_join(load_thread, 0);
@@ -97,20 +95,20 @@
printf("Loaded: %lf seconds\n", sec(clock()-time));
-/*
- image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
- image copy = copy_image(im);
- draw_coco(copy, train.y.vals[113], 7, "truth");
- cvWaitKey(0);
- free_image(copy);
- */
+ /*
+ image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
+ image copy = copy_image(im);
+ draw_coco(copy, train.y.vals[113], 7, "truth");
+ cvWaitKey(0);
+ free_image(copy);
+ */
time=clock();
float loss = train_network(net, train);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
- printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
+ printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
@@ -123,60 +121,38 @@
save_weights(net, buff);
}
-void get_probs(float *predictions, int total, int classes, int inc, float **probs)
+void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
{
- int i,j;
- for (i = 0; i < total; ++i){
- int index = i*inc;
- float scale = predictions[index];
- probs[i][0] = scale;
- for(j = 0; j < classes; ++j){
- probs[i][j] = scale*predictions[index+j+1];
+ int i,j,n;
+ //int per_cell = 5*num+classes;
+ for (i = 0; i < side*side; ++i){
+ int row = i / side;
+ int col = i % side;
+ for(n = 0; n < num; ++n){
+ int index = i*num + n;
+ int p_index = side*side*classes + i*num + n;
+ float scale = predictions[p_index];
+ int box_index = side*side*(classes + num) + (i*num + n)*4;
+ boxes[index].x = (predictions[box_index + 0] + col) / side * w;
+ boxes[index].y = (predictions[box_index + 1] + row) / side * h;
+ boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w;
+ boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h;
+ for(j = 0; j < classes; ++j){
+ int class_index = i*classes;
+ float prob = scale*predictions[class_index+j];
+ probs[index][j] = (prob > thresh) ? prob : 0;
+ }
+ if(only_objectness){
+ probs[index][0] = scale;
+ }
}
}
}
-void get_boxes(float *predictions, int n, int num_boxes, int per_box, box *boxes)
-{
- int i,j;
- for (i = 0; i < num_boxes*num_boxes; ++i){
- for(j = 0; j < n; ++j){
- int index = i*n+j;
- int offset = index*per_box;
- int row = i / num_boxes;
- int col = i % num_boxes;
- boxes[index].x = (predictions[offset + 0] + col) / num_boxes;
- boxes[index].y = (predictions[offset + 1] + row) / num_boxes;
- boxes[index].w = predictions[offset + 2];
- boxes[index].h = predictions[offset + 3];
- }
- }
-}
-
-void convert_cocos(float *predictions, int classes, int num_boxes, int num, int w, int h, float thresh, float **probs, box *boxes)
-{
- int i,j;
- int per_box = 4+classes;
- for (i = 0; i < num_boxes*num_boxes*num; ++i){
- int offset = i*per_box;
- for(j = 0; j < classes; ++j){
- float prob = predictions[offset+j];
- probs[i][j] = (prob > thresh) ? prob : 0;
- }
- int row = i / num_boxes;
- int col = i % num_boxes;
- offset += classes;
- boxes[i].x = (predictions[offset + 0] + col) / num_boxes;
- boxes[i].y = (predictions[offset + 1] + row) / num_boxes;
- boxes[i].w = predictions[offset + 2];
- boxes[i].h = predictions[offset + 3];
- }
-}
-
void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
{
int i, j;
- for(i = 0; i < num_boxes*num_boxes; ++i){
+ for(i = 0; i < num_boxes; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
@@ -204,201 +180,6 @@
return atoi(p+1);
}
-void validate_recall(char *cfgfile, char *weightfile)
-{
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- set_batch_network(&net, 1);
- fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- srand(time(0));
-
- char *val_images = "/home/pjreddie/data/voc/test/2007_test.txt";
- list *plist = get_paths(val_images);
- char **paths = (char **)list_to_array(plist);
-
- layer l = net.layers[net.n - 1];
-
- int num_boxes = l.side;
- int num = l.n;
- int classes = l.classes;
-
- int j;
-
- box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
- float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
- for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
-
- int N = plist->size;
- int i=0;
- int k;
-
- float iou_thresh = .5;
- float thresh = .1;
- int total = 0;
- int correct = 0;
- float avg_iou = 0;
- int nms = 1;
- int proposals = 0;
- int save = 1;
-
- for (i = 0; i < N; ++i) {
- char *path = paths[i];
- image orig = load_image_color(path, 0, 0);
- image resized = resize_image(orig, net.w, net.h);
-
- float *X = resized.data;
- float *predictions = network_predict(net, X);
- get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
- get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
- if (nms) do_nms(boxes, probs, num*num_boxes*num_boxes, (classes>0) ? classes : 1, iou_thresh);
-
- char *labelpath = find_replace(path, "images", "labels");
- labelpath = find_replace(labelpath, "JPEGImages", "labels");
- labelpath = find_replace(labelpath, ".jpg", ".txt");
- labelpath = find_replace(labelpath, ".JPEG", ".txt");
-
- int num_labels = 0;
- box_label *truth = read_boxes(labelpath, &num_labels);
- for(k = 0; k < num_boxes*num_boxes*num; ++k){
- if(probs[k][0] > thresh){
- ++proposals;
- if(save){
- char buff[256];
- sprintf(buff, "/data/extracted/nms_preds/%d", proposals);
- int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
- int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
- int w = boxes[k].w * orig.w;
- int h = boxes[k].h * orig.h;
- image cropped = crop_image(orig, dx, dy, w, h);
- image sized = resize_image(cropped, 224, 224);
-#ifdef OPENCV
- save_image_jpg(sized, buff);
-#endif
- free_image(sized);
- free_image(cropped);
- sprintf(buff, "/data/extracted/nms_pred_boxes/%d.txt", proposals);
- char *im_id = basecfg(path);
- FILE *fp = fopen(buff, "w");
- fprintf(fp, "%s %d %d %d %d\n", im_id, dx, dy, dx+w, dy+h);
- fclose(fp);
- free(im_id);
- }
- }
- }
- for (j = 0; j < num_labels; ++j) {
- ++total;
- box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
- float best_iou = 0;
- for(k = 0; k < num_boxes*num_boxes*num; ++k){
- float iou = box_iou(boxes[k], t);
- if(probs[k][0] > thresh && iou > best_iou){
- best_iou = iou;
- }
- }
- avg_iou += best_iou;
- if(best_iou > iou_thresh){
- ++correct;
- }
- }
- free(truth);
- free_image(orig);
- free_image(resized);
- fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
- }
-}
-
-void extract_boxes(char *cfgfile, char *weightfile)
-{
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- set_batch_network(&net, 1);
- fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- srand(time(0));
-
- char *val_images = "/home/pjreddie/data/voc/test/train.txt";
- list *plist = get_paths(val_images);
- char **paths = (char **)list_to_array(plist);
-
- layer l = net.layers[net.n - 1];
-
- int num_boxes = l.side;
- int num = l.n;
- int classes = l.classes;
-
- int j;
-
- box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
- float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
- for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
-
- int N = plist->size;
- int i=0;
- int k;
-
- int count = 0;
- float iou_thresh = .3;
-
- for (i = 0; i < N; ++i) {
- fprintf(stderr, "%5d %5d\n", i, count);
- char *path = paths[i];
- image orig = load_image_color(path, 0, 0);
- image resized = resize_image(orig, net.w, net.h);
-
- float *X = resized.data;
- float *predictions = network_predict(net, X);
- get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
- get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
-
- char *labelpath = find_replace(path, "images", "labels");
- labelpath = find_replace(labelpath, "JPEGImages", "labels");
- labelpath = find_replace(labelpath, ".jpg", ".txt");
- labelpath = find_replace(labelpath, ".JPEG", ".txt");
-
- int num_labels = 0;
- box_label *truth = read_boxes(labelpath, &num_labels);
- FILE *label = stdin;
- for(k = 0; k < num_boxes*num_boxes*num; ++k){
- int overlaps = 0;
- for (j = 0; j < num_labels; ++j) {
- box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
- float iou = box_iou(boxes[k], t);
- if (iou > iou_thresh){
- if (!overlaps) {
- char buff[256];
- sprintf(buff, "/data/extracted/labels/%d.txt", count);
- label = fopen(buff, "w");
- overlaps = 1;
- }
- fprintf(label, "%d %f\n", truth[j].id, iou);
- }
- }
- if (overlaps) {
- char buff[256];
- sprintf(buff, "/data/extracted/imgs/%d", count++);
- int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
- int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
- int w = boxes[k].w * orig.w;
- int h = boxes[k].h * orig.h;
- image cropped = crop_image(orig, dx, dy, w, h);
- image sized = resize_image(cropped, 224, 224);
-#ifdef OPENCV
- save_image_jpg(sized, buff);
-#endif
- free_image(sized);
- free_image(cropped);
- fclose(label);
- }
- }
- free(truth);
- free_image(orig);
- free_image(resized);
- }
-}
-
void validate_coco(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
@@ -409,13 +190,16 @@
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
- char *base = "/home/pjreddie/backup/";
+ char *base = "results/";
list *plist = get_paths("data/coco_val_5k.list");
+ //list *plist = get_paths("/home/pjreddie/data/people-art/test.txt");
+ //list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
char **paths = (char **)list_to_array(plist);
- int num_boxes = 9;
- int num = 4;
- int classes = 1;
+ layer l = net.layers[net.n-1];
+ int classes = l.classes;
+ int square = l.sqrt;
+ int side = l.side;
int j;
char buff[1024];
@@ -423,29 +207,30 @@
FILE *fp = fopen(buff, "w");
fprintf(fp, "[\n");
- box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
- float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
- for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes, sizeof(float *));
+ box *boxes = calloc(side*side*l.n, sizeof(box));
+ float **probs = calloc(side*side*l.n, sizeof(float *));
+ for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
int m = plist->size;
int i=0;
int t;
- float thresh = .01;
+ float thresh = .001;
int nms = 1;
float iou_thresh = .5;
- load_args args = {0};
- args.w = net.w;
- args.h = net.h;
- args.type = IMAGE_DATA;
-
int nthreads = 8;
image *val = calloc(nthreads, sizeof(image));
image *val_resized = calloc(nthreads, sizeof(image));
image *buf = calloc(nthreads, sizeof(image));
image *buf_resized = calloc(nthreads, sizeof(image));
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
+
+ load_args args = {0};
+ args.w = net.w;
+ args.h = net.h;
+ args.type = IMAGE_DATA;
+
for(t = 0; t < nthreads; ++t){
args.path = paths[i+t];
args.im = &buf[t];
@@ -473,9 +258,9 @@
float *predictions = network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
- convert_cocos(predictions, classes, num_boxes, num, w, h, thresh, probs, boxes);
- if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
- print_cocos(fp, image_id, boxes, probs, num_boxes, classes, w, h);
+ convert_coco_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
+ if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
+ print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h);
free_image(val[t]);
free_image(val_resized[t]);
}
@@ -483,21 +268,114 @@
fseek(fp, -2, SEEK_CUR);
fprintf(fp, "\n]\n");
fclose(fp);
+
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
-void test_coco(char *cfgfile, char *weightfile, char *filename)
+void validate_coco_recall(char *cfgfile, char *weightfile)
+{
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ set_batch_network(&net, 1);
+ fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+ srand(time(0));
+
+ char *base = "results/comp4_det_test_";
+ list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
+ char **paths = (char **)list_to_array(plist);
+
+ layer l = net.layers[net.n-1];
+ int classes = l.classes;
+ int square = l.sqrt;
+ int side = l.side;
+
+ int j, k;
+ FILE **fps = calloc(classes, sizeof(FILE *));
+ for(j = 0; j < classes; ++j){
+ char buff[1024];
+ snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
+ fps[j] = fopen(buff, "w");
+ }
+ box *boxes = calloc(side*side*l.n, sizeof(box));
+ float **probs = calloc(side*side*l.n, sizeof(float *));
+ for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
+
+ int m = plist->size;
+ int i=0;
+
+ float thresh = .001;
+ int nms = 0;
+ float iou_thresh = .5;
+ float nms_thresh = .5;
+
+ int total = 0;
+ int correct = 0;
+ int proposals = 0;
+ float avg_iou = 0;
+
+ for(i = 0; i < m; ++i){
+ char *path = paths[i];
+ image orig = load_image_color(path, 0, 0);
+ image sized = resize_image(orig, net.w, net.h);
+ char *id = basecfg(path);
+ float *predictions = network_predict(net, sized.data);
+ convert_coco_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
+ if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
+
+ char *labelpath = find_replace(path, "images", "labels");
+ labelpath = find_replace(labelpath, "JPEGImages", "labels");
+ labelpath = find_replace(labelpath, ".jpg", ".txt");
+ labelpath = find_replace(labelpath, ".JPEG", ".txt");
+
+ int num_labels = 0;
+ box_label *truth = read_boxes(labelpath, &num_labels);
+ for(k = 0; k < side*side*l.n; ++k){
+ if(probs[k][0] > thresh){
+ ++proposals;
+ }
+ }
+ for (j = 0; j < num_labels; ++j) {
+ ++total;
+ box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
+ float best_iou = 0;
+ for(k = 0; k < side*side*l.n; ++k){
+ float iou = box_iou(boxes[k], t);
+ if(probs[k][0] > thresh && iou > best_iou){
+ best_iou = iou;
+ }
+ }
+ avg_iou += best_iou;
+ if(best_iou > iou_thresh){
+ ++correct;
+ }
+ }
+
+ fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
+ free(id);
+ free_image(orig);
+ free_image(sized);
+ }
+}
+
+void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
+ region_layer l = net.layers[net.n-1];
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
char buff[256];
char *input = buff;
+ int j;
+ box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
+ float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
+ for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
while(1){
if(filename){
strncpy(input, filename, 256);
@@ -514,7 +392,10 @@
time=clock();
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
- draw_coco(im, predictions, 7, "predictions");
+ convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
+ draw_coco(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
+
+ show_image(sized, "resized");
free_image(im);
free_image(sized);
#ifdef OPENCV
@@ -527,6 +408,7 @@
void run_coco(int argc, char **argv)
{
+ float thresh = find_float_arg(argc, argv, "-thresh", .2);
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
@@ -535,8 +417,8 @@
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5]: 0;
- if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename);
+ if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename, thresh);
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
- else if(0==strcmp(argv[2], "extract")) extract_boxes(cfg, weights);
- else if(0==strcmp(argv[2], "valid")) validate_recall(cfg, weights);
+ else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
+ else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
}
diff --git a/src/compare.c b/src/compare.c
index 76e0b60..a1f494e 100644
--- a/src/compare.c
+++ b/src/compare.c
@@ -307,7 +307,7 @@
qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
N /= 2;
- for(round = 1; round <= 20; ++round){
+ for(round = 1; round <= 100; ++round){
clock_t round_time=clock();
printf("Round: %d\n", round);
@@ -316,7 +316,7 @@
bbox_fight(net, boxes+i*2, boxes+i*2+1, classes, class);
}
qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
- N = (N*9/10)/2*2;
+ if(round <= 20) N = (N*9/10)/2*2;
printf("Round: %f secs, %d remaining\n", sec(clock()-round_time), N);
}
diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index a150c20..60a1879 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -8,21 +8,65 @@
#include "cuda.h"
}
-__global__ void bias_output_kernel(float *output, float *biases, int n, int size)
+__global__ void scale_bias_kernel(float *output, float *biases, int n, int size)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x;
int filter = blockIdx.y;
int batch = blockIdx.z;
- if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter];
+ if(offset < size) output[(batch*n+filter)*size + offset] *= biases[filter];
}
-void bias_output_gpu(float *output, float *biases, int batch, int n, int size)
+void scale_bias_gpu(float *output, float *biases, int batch, int n, int size)
{
dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
dim3 dimBlock(BLOCK, 1, 1);
- bias_output_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
+ scale_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
+{
+ __shared__ float part[BLOCK];
+ int i,b;
+ int filter = blockIdx.x;
+ int p = threadIdx.x;
+ float sum = 0;
+ for(b = 0; b < batch; ++b){
+ for(i = 0; i < size; i += BLOCK){
+ int index = p + i + size*(filter + n*b);
+ sum += (p+i < size) ? delta[index]*x_norm[index] : 0;
+ }
+ }
+ part[p] = sum;
+ __syncthreads();
+ if (p == 0) {
+ for(i = 0; i < BLOCK; ++i) scale_updates[filter] += part[i];
+ }
+}
+
+void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
+{
+ backward_scale_kernel<<<n, BLOCK>>>(x_norm, delta, batch, n, size, scale_updates);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void add_bias_kernel(float *output, float *biases, int n, int size)
+{
+ int offset = blockIdx.x * blockDim.x + threadIdx.x;
+ int filter = blockIdx.y;
+ int batch = blockIdx.z;
+
+ if(offset < size) output[(batch*n+filter)*size + offset] += biases[filter];
+}
+
+void add_bias_gpu(float *output, float *biases, int batch, int n, int size)
+{
+ dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
+ dim3 dimBlock(BLOCK, 1, 1);
+
+ add_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
check_error(cudaPeekAtLastError());
}
@@ -41,7 +85,7 @@
}
part[p] = sum;
__syncthreads();
- if(p == 0){
+ if (p == 0) {
for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i];
}
}
@@ -52,53 +96,88 @@
check_error(cudaPeekAtLastError());
}
-void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
+void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
{
int i;
- int m = layer.n;
- int k = layer.size*layer.size*layer.c;
- int n = convolutional_out_height(layer)*
- convolutional_out_width(layer);
+ int m = l.n;
+ int k = l.size*l.size*l.c;
+ int n = convolutional_out_height(l)*
+ convolutional_out_width(l);
- bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n);
- for(i = 0; i < layer.batch; ++i){
- im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
- float * a = layer.filters_gpu;
- float * b = layer.col_image_gpu;
- float * c = layer.output_gpu;
+ fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
+ for(i = 0; i < l.batch; ++i){
+ im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu);
+ float * a = l.filters_gpu;
+ float * b = l.col_image_gpu;
+ float * c = l.output_gpu;
gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
}
- activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation);
+
+ if(l.batch_normalize){
+ if(state.train){
+ fast_mean_gpu(l.output_gpu, l.batch, l.n, l.out_h*l.out_w, l.spatial_mean_gpu, l.mean_gpu);
+ fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.n, l.out_h*l.out_w, l.spatial_variance_gpu, l.variance_gpu);
+
+ scal_ongpu(l.n, .95, l.rolling_mean_gpu, 1);
+ axpy_ongpu(l.n, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
+ scal_ongpu(l.n, .95, l.rolling_variance_gpu, 1);
+ axpy_ongpu(l.n, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
+
+ // cuda_pull_array(l.variance_gpu, l.mean, l.n);
+ // printf("%f\n", l.mean[0]);
+
+ copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
+ normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_h*l.out_w);
+ copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
+ } else {
+ normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.n, l.out_h*l.out_w);
+ }
+
+ scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w);
+ }
+ add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n);
+
+ activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation);
}
-void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
+void backward_convolutional_layer_gpu(convolutional_layer l, network_state state)
{
int i;
- int m = layer.n;
- int n = layer.size*layer.size*layer.c;
- int k = convolutional_out_height(layer)*
- convolutional_out_width(layer);
+ int m = l.n;
+ int n = l.size*l.size*l.c;
+ int k = convolutional_out_height(l)*
+ convolutional_out_width(l);
- gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu);
- backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k);
+ gradient_array_ongpu(l.output_gpu, m*k*l.batch, l.activation, l.delta_gpu);
- for(i = 0; i < layer.batch; ++i){
- float * a = layer.delta_gpu;
- float * b = layer.col_image_gpu;
- float * c = layer.filter_updates_gpu;
+ backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, k);
- im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
+ if(l.batch_normalize){
+ backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.scale_updates_gpu);
+
+ scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w);
+
+ fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.spatial_mean_delta_gpu, l.mean_delta_gpu);
+ fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.spatial_variance_delta_gpu, l.variance_delta_gpu);
+ normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.delta_gpu);
+ }
+
+ for(i = 0; i < l.batch; ++i){
+ float * a = l.delta_gpu;
+ float * b = l.col_image_gpu;
+ float * c = l.filter_updates_gpu;
+
+ im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu);
gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
if(state.delta){
-
- float * a = layer.filters_gpu;
- float * b = layer.delta_gpu;
- float * c = layer.col_image_gpu;
+ float * a = l.filters_gpu;
+ float * b = l.delta_gpu;
+ float * c = l.col_image_gpu;
gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
- col2im_ongpu(layer.col_image_gpu, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta + i*layer.c*layer.h*layer.w);
+ col2im_ongpu(l.col_image_gpu, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
}
}
}
@@ -109,6 +188,11 @@
cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
+ if (layer.batch_normalize){
+ cuda_pull_array(layer.scales_gpu, layer.scales, layer.n);
+ cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
+ cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
+ }
}
void push_convolutional_layer(convolutional_layer layer)
@@ -117,6 +201,11 @@
cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
+ if (layer.batch_normalize){
+ cuda_push_array(layer.scales_gpu, layer.scales, layer.n);
+ cuda_push_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
+ cuda_push_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
+ }
}
void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
@@ -126,8 +215,12 @@
axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
+ axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1);
+ scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1);
+
axpy_ongpu(size, -decay*batch, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
axpy_ongpu(size, learning_rate/batch, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
scal_ongpu(size, momentum, layer.filter_updates_gpu, 1);
}
+
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index f3609ea..b9fd3c9 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -41,7 +41,7 @@
return float_to_image(w,h,c,l.delta);
}
-convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
+convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize)
{
int i;
convolutional_layer l = {0};
@@ -55,18 +55,17 @@
l.stride = stride;
l.size = size;
l.pad = pad;
+ l.batch_normalize = batch_normalize;
l.filters = calloc(c*n*size*size, sizeof(float));
l.filter_updates = calloc(c*n*size*size, sizeof(float));
l.biases = calloc(n, sizeof(float));
l.bias_updates = calloc(n, sizeof(float));
+
// float scale = 1./sqrt(size*size*c);
float scale = sqrt(2./(size*size*c));
for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
- for(i = 0; i < n; ++i){
- l.biases[i] = scale;
- }
int out_h = convolutional_out_height(l);
int out_w = convolutional_out_width(l);
l.out_h = out_h;
@@ -79,17 +78,55 @@
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
- #ifdef GPU
+ if(batch_normalize){
+ l.scales = calloc(n, sizeof(float));
+ l.scale_updates = calloc(n, sizeof(float));
+ for(i = 0; i < n; ++i){
+ l.scales[i] = 1;
+ }
+
+ l.mean = calloc(n, sizeof(float));
+ l.spatial_mean = calloc(n*l.batch, sizeof(float));
+
+ l.variance = calloc(n, sizeof(float));
+ l.rolling_mean = calloc(n, sizeof(float));
+ l.rolling_variance = calloc(n, sizeof(float));
+ }
+
+#ifdef GPU
l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
l.biases_gpu = cuda_make_array(l.biases, n);
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
+ l.scales_gpu = cuda_make_array(l.scales, n);
+ l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
+
l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
- #endif
+
+ if(batch_normalize){
+ l.mean_gpu = cuda_make_array(l.mean, n);
+ l.variance_gpu = cuda_make_array(l.variance, n);
+
+ l.rolling_mean_gpu = cuda_make_array(l.mean, n);
+ l.rolling_variance_gpu = cuda_make_array(l.variance, n);
+
+ l.spatial_mean_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
+ l.spatial_variance_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
+
+ l.spatial_mean_delta_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
+ l.spatial_variance_delta_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
+
+ l.mean_delta_gpu = cuda_make_array(l.mean, n);
+ l.variance_delta_gpu = cuda_make_array(l.variance, n);
+
+ l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+ l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+ }
+#endif
l.activation = activation;
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
@@ -97,6 +134,42 @@
return l;
}
+void denormalize_convolutional_layer(convolutional_layer l)
+{
+ int i, j;
+ for(i = 0; i < l.n; ++i){
+ float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
+ for(j = 0; j < l.c*l.size*l.size; ++j){
+ l.filters[i*l.c*l.size*l.size + j] *= scale;
+ }
+ l.biases[i] -= l.rolling_mean[i] * scale;
+ }
+}
+
+void test_convolutional_layer()
+{
+ convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1);
+ l.batch_normalize = 1;
+ float data[] = {1,1,1,1,1,
+ 1,1,1,1,1,
+ 1,1,1,1,1,
+ 1,1,1,1,1,
+ 1,1,1,1,1,
+ 2,2,2,2,2,
+ 2,2,2,2,2,
+ 2,2,2,2,2,
+ 2,2,2,2,2,
+ 2,2,2,2,2,
+ 3,3,3,3,3,
+ 3,3,3,3,3,
+ 3,3,3,3,3,
+ 3,3,3,3,3,
+ 3,3,3,3,3};
+ network_state state = {0};
+ state.input = data;
+ forward_convolutional_layer(l, state);
+}
+
void resize_convolutional_layer(convolutional_layer *l, int w, int h)
{
l->w = w;
@@ -111,13 +184,13 @@
l->inputs = l->w * l->h * l->c;
l->col_image = realloc(l->col_image,
- out_h*out_w*l->size*l->size*l->c*sizeof(float));
+ out_h*out_w*l->size*l->size*l->c*sizeof(float));
l->output = realloc(l->output,
- l->batch*out_h * out_w * l->n*sizeof(float));
+ l->batch*out_h * out_w * l->n*sizeof(float));
l->delta = realloc(l->delta,
- l->batch*out_h * out_w * l->n*sizeof(float));
+ l->batch*out_h * out_w * l->n*sizeof(float));
- #ifdef GPU
+#ifdef GPU
cuda_free(l->col_image_gpu);
cuda_free(l->delta_gpu);
cuda_free(l->output_gpu);
@@ -125,7 +198,7 @@
l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
- #endif
+#endif
}
void bias_output(float *output, float *biases, int batch, int n, int size)
@@ -150,7 +223,6 @@
}
}
-
void forward_convolutional_layer(const convolutional_layer l, network_state state)
{
int out_h = convolutional_out_height(l);
@@ -169,11 +241,18 @@
for(i = 0; i < l.batch; ++i){
im2col_cpu(state.input, l.c, l.h, l.w,
- l.size, l.stride, l.pad, b);
+ l.size, l.stride, l.pad, b);
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
c += n*m;
state.input += l.c*l.h*l.w;
}
+
+ if(l.batch_normalize){
+ mean_cpu(l.output, l.batch, l.n, l.out_h*l.out_w, l.mean);
+ variance_cpu(l.output, l.mean, l.batch, l.n, l.out_h*l.out_w, l.variance);
+ normalize_cpu(l.output, l.mean, l.variance, l.batch, l.n, l.out_h*l.out_w);
+ }
+
activate_array(l.output, m*n*l.batch, l.activation);
}
diff --git a/src/convolutional_layer.h b/src/convolutional_layer.h
index 7452c3c..70a3d05 100644
--- a/src/convolutional_layer.h
+++ b/src/convolutional_layer.h
@@ -17,11 +17,12 @@
void push_convolutional_layer(convolutional_layer layer);
void pull_convolutional_layer(convolutional_layer layer);
-void bias_output_gpu(float *output, float *biases, int batch, int n, int size);
+void add_bias_gpu(float *output, float *biases, int batch, int n, int size);
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
#endif
-convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation);
+convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalization);
+void denormalize_convolutional_layer(convolutional_layer l);
void resize_convolutional_layer(convolutional_layer *layer, int w, int h);
void forward_convolutional_layer(const convolutional_layer layer, network_state state);
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay);
diff --git a/src/crop_layer_kernels.cu b/src/crop_layer_kernels.cu
index fc7fcbd..fdebd1b 100644
--- a/src/crop_layer_kernels.cu
+++ b/src/crop_layer_kernels.cu
@@ -91,7 +91,7 @@
return val;
}
-__global__ void levels_image_kernel(float *image, float *rand, int batch, int w, int h, int train, float saturation, float exposure, float translate, float scale)
+__global__ void levels_image_kernel(float *image, float *rand, int batch, int w, int h, int train, float saturation, float exposure, float translate, float scale, float shift)
{
int size = batch * w * h;
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@@ -100,6 +100,9 @@
id /= w;
int y = id % h;
id /= h;
+ float rshift = rand[0];
+ float gshift = rand[1];
+ float bshift = rand[2];
float r0 = rand[8*id + 0];
float r1 = rand[8*id + 1];
float r2 = rand[8*id + 2];
@@ -121,10 +124,12 @@
hsv.y *= saturation;
hsv.z *= exposure;
rgb = hsv_to_rgb_kernel(hsv);
+ } else {
+ shift = 0;
}
- image[x + w*(y + h*0)] = rgb.x*scale + translate;
- image[x + w*(y + h*1)] = rgb.y*scale + translate;
- image[x + w*(y + h*2)] = rgb.z*scale + translate;
+ image[x + w*(y + h*0)] = rgb.x*scale + translate + (rshift - .5)*shift;
+ image[x + w*(y + h*1)] = rgb.y*scale + translate + (gshift - .5)*shift;
+ image[x + w*(y + h*2)] = rgb.z*scale + translate + (bshift - .5)*shift;
}
__global__ void forward_crop_layer_kernel(float *input, float *rand, int size, int c, int h, int w, int crop_height, int crop_width, int train, int flip, float angle, float *output)
@@ -186,7 +191,7 @@
int size = layer.batch * layer.w * layer.h;
- levels_image_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.rand_gpu, layer.batch, layer.w, layer.h, state.train, layer.saturation, layer.exposure, translate, scale);
+ levels_image_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.rand_gpu, layer.batch, layer.w, layer.h, state.train, layer.saturation, layer.exposure, translate, scale, layer.shift);
check_error(cudaPeekAtLastError());
size = layer.batch*layer.c*layer.crop_width*layer.crop_height;
diff --git a/src/darknet.c b/src/darknet.c
index 073156b..7814611 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -141,6 +141,47 @@
save_weights(net, outfile);
}
+void normalize_net(char *cfgfile, char *weightfile, char *outfile)
+{
+ gpu_index = -1;
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ int i, j;
+ for(i = 0; i < net.n; ++i){
+ layer l = net.layers[i];
+ if(l.type == CONVOLUTIONAL){
+ net.layers[i].batch_normalize=1;
+ net.layers[i].scales = calloc(l.n, sizeof(float));
+ for(j = 0; j < l.n; ++j){
+ net.layers[i].scales[i] = 1;
+ }
+ net.layers[i].rolling_mean = calloc(l.n, sizeof(float));
+ net.layers[i].rolling_variance = calloc(l.n, sizeof(float));
+ }
+ }
+ save_weights(net, outfile);
+}
+
+void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
+{
+ gpu_index = -1;
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ int i;
+ for(i = 0; i < net.n; ++i){
+ layer l = net.layers[i];
+ if(l.type == CONVOLUTIONAL){
+ denormalize_convolutional_layer(l);
+ net.layers[i].batch_normalize=0;
+ }
+ }
+ save_weights(net, outfile);
+}
+
void visualize(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
@@ -202,6 +243,10 @@
change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0);
} else if (0 == strcmp(argv[1], "rgbgr")){
rgbgr_net(argv[2], argv[3], argv[4]);
+ } else if (0 == strcmp(argv[1], "denormalize")){
+ denormalize_net(argv[2], argv[3], argv[4]);
+ } else if (0 == strcmp(argv[1], "normalize")){
+ normalize_net(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "rescale")){
rescale_net(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "partial")){
diff --git a/src/data.c b/src/data.c
index 92c3d95..df15dc5 100644
--- a/src/data.c
+++ b/src/data.c
@@ -153,7 +153,9 @@
{
char *labelpath = find_replace(path, "images", "labels");
labelpath = find_replace(labelpath, "JPEGImages", "labels");
+
labelpath = find_replace(labelpath, ".jpg", ".txt");
+ labelpath = find_replace(labelpath, ".JPG", ".txt");
labelpath = find_replace(labelpath, ".JPEG", ".txt");
int count = 0;
box_label *boxes = read_boxes(labelpath, &count);
@@ -547,7 +549,7 @@
check_error(status);
#endif
- printf("Loading data: %d\n", rand_r(&data_seed));
+ //printf("Loading data: %d\n", rand_r(&data_seed));
load_args a = *(struct load_args*)ptr;
if (a.type == CLASSIFICATION_DATA){
*a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h);
diff --git a/src/deconvolutional_kernels.cu b/src/deconvolutional_kernels.cu
index aeab2c3..a74fb78 100644
--- a/src/deconvolutional_kernels.cu
+++ b/src/deconvolutional_kernels.cu
@@ -20,7 +20,7 @@
int n = layer.h*layer.w;
int k = layer.c;
- bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size);
+ fill_ongpu(layer.outputs*layer.batch, 0, layer.output_gpu, 1);
for(i = 0; i < layer.batch; ++i){
float *a = layer.filters_gpu;
@@ -31,6 +31,7 @@
col2im_ongpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output_gpu+i*layer.n*size);
}
+ add_bias_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size);
activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation);
}
diff --git a/src/image.c b/src/image.c
index 861d8a2..ac49529 100644
--- a/src/image.c
+++ b/src/image.c
@@ -215,7 +215,7 @@
IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c);
int step = disp->widthStep;
- cvNamedWindow(buff, CV_WINDOW_AUTOSIZE);
+ cvNamedWindow(buff, CV_WINDOW_NORMAL);
//cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10));
++windows;
for(y = 0; y < p.h; ++y){
@@ -696,7 +696,7 @@
if( (src = cvLoadImage(filename, flag)) == 0 )
{
- printf("Cannot load file image %s\n", filename);
+ printf("Cannot load image \"%s\"\n", filename);
exit(0);
}
image out = ipl_to_image(src);
@@ -713,7 +713,7 @@
int w, h, c;
unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
if (!data) {
- fprintf(stderr, "Cannot load file image %s\nSTB Reason: %s\n", filename, stbi_failure_reason());
+ fprintf(stderr, "Cannot load image \"%s\"\nSTB Reason: %s\n", filename, stbi_failure_reason());
exit(0);
}
if(channels) c = channels;
diff --git a/src/imagenet.c b/src/imagenet.c
index 1701a2a..fa16251 100644
--- a/src/imagenet.c
+++ b/src/imagenet.c
@@ -92,6 +92,7 @@
srand(time(0));
char **labels = get_labels("data/inet.labels.list");
+ //list *plist = get_paths("data/inet.suppress.list");
list *plist = get_paths("data/inet.val.list");
char **paths = (char **)list_to_array(plist);
diff --git a/src/layer.h b/src/layer.h
index 49f144d..2b136a0 100644
--- a/src/layer.h
+++ b/src/layer.h
@@ -27,6 +27,7 @@
LAYER_TYPE type;
ACTIVATION activation;
COST_TYPE cost_type;
+ int batch_normalize;
int batch;
int forced;
int object_logistic;
@@ -51,6 +52,7 @@
float jitter;
float saturation;
float exposure;
+ float shift;
int softmax;
int classes;
int coords;
@@ -71,6 +73,7 @@
float class_scale;
int dontload;
+ int dontloadscales;
float probability;
float scale;
@@ -84,6 +87,9 @@
float *biases;
float *bias_updates;
+ float *scales;
+ float *scale_updates;
+
float *weights;
float *weight_updates;
@@ -95,18 +101,44 @@
float * squared;
float * norms;
+ float * spatial_mean;
+ float * mean;
+ float * variance;
+
+ float * rolling_mean;
+ float * rolling_variance;
+
#ifdef GPU
int *indexes_gpu;
float * filters_gpu;
float * filter_updates_gpu;
+ float * spatial_mean_gpu;
+ float * spatial_variance_gpu;
+
+ float * mean_gpu;
+ float * variance_gpu;
+
+ float * rolling_mean_gpu;
+ float * rolling_variance_gpu;
+
+ float * spatial_mean_delta_gpu;
+ float * spatial_variance_delta_gpu;
+
+ float * variance_delta_gpu;
+ float * mean_delta_gpu;
+
float * col_image_gpu;
+ float * x_gpu;
+ float * x_norm_gpu;
float * weights_gpu;
float * biases_gpu;
+ float * scales_gpu;
float * weight_updates_gpu;
float * bias_updates_gpu;
+ float * scale_updates_gpu;
float * output_gpu;
float * delta_gpu;
diff --git a/src/network.h b/src/network.h
index 78ad0fe..1caf838 100644
--- a/src/network.h
+++ b/src/network.h
@@ -15,6 +15,7 @@
int n;
int batch;
int *seen;
+ float epoch;
int subdivisions;
float momentum;
float decay;
diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index cfc6e83..d2c8bf9 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -36,7 +36,7 @@
for(i = 0; i < net.n; ++i){
layer l = net.layers[i];
if(l.delta_gpu){
- scal_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
+ fill_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
}
if(l.type == CONVOLUTIONAL){
forward_convolutional_layer_gpu(l, state);
diff --git a/src/parser.c b/src/parser.c
index a3400d0..254da5c 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -124,8 +124,9 @@
c = params.c;
batch=params.batch;
if(!(h && w && c)) error("Layer before convolutional layer must output image.");
+ int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
- convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation);
+ convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize);
char *weights = option_find_str(options, "weights", 0);
char *biases = option_find_str(options, "biases", 0);
@@ -227,6 +228,7 @@
int noadjust = option_find_int_quiet(options, "noadjust",0);
crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
+ l.shift = option_find_float(options, "shift", 0);
l.noadjust = noadjust;
return l;
}
@@ -452,6 +454,7 @@
fprintf(stderr, "Type not recognized: %s\n", s->type);
}
l.dontload = option_find_int_quiet(options, "dontload", 0);
+ l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
option_unused(options);
net.layers[count] = l;
free_section(s);
@@ -633,19 +636,13 @@
#endif
int num = l.n*l.c*l.size*l.size;
fwrite(l.biases, sizeof(float), l.n, fp);
- fwrite(l.filters, sizeof(float), num, fp);
- }
- if(l.type == DECONVOLUTIONAL){
-#ifdef GPU
- if(gpu_index >= 0){
- pull_deconvolutional_layer(l);
+ if (l.batch_normalize){
+ fwrite(l.scales, sizeof(float), l.n, fp);
+ fwrite(l.rolling_mean, sizeof(float), l.n, fp);
+ fwrite(l.rolling_variance, sizeof(float), l.n, fp);
}
-#endif
- int num = l.n*l.c*l.size*l.size;
- fwrite(l.biases, sizeof(float), l.n, fp);
fwrite(l.filters, sizeof(float), num, fp);
- }
- if(l.type == CONNECTED){
+ } if(l.type == CONNECTED){
#ifdef GPU
if(gpu_index >= 0){
pull_connected_layer(l);
@@ -682,6 +679,11 @@
if(l.type == CONVOLUTIONAL){
int num = l.n*l.c*l.size*l.size;
fread(l.biases, sizeof(float), l.n, fp);
+ if (l.batch_normalize && (!l.dontloadscales)){
+ fread(l.scales, sizeof(float), l.n, fp);
+ fread(l.rolling_mean, sizeof(float), l.n, fp);
+ fread(l.rolling_variance, sizeof(float), l.n, fp);
+ }
fread(l.filters, sizeof(float), num, fp);
#ifdef GPU
if(gpu_index >= 0){
diff --git a/src/region_layer.c b/src/region_layer.c
index 3239f87..3fff22b 100644
--- a/src/region_layer.c
+++ b/src/region_layer.c
@@ -226,6 +226,11 @@
void forward_region_layer_gpu(const region_layer l, network_state state)
{
+ if(!state.train){
+ copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
+ return;
+ }
+
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
float *truth_cpu = 0;
if(state.truth){
diff --git a/src/swag.c b/src/swag.c
index 8c9ce3c..4dc6bf9 100644
--- a/src/swag.c
+++ b/src/swag.c
@@ -12,39 +12,28 @@
char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
-void draw_swag(image im, float *predictions, int side, int num, char *label, float thresh)
+void draw_swag(image im, int num, float thresh, box *boxes, float **probs, char *label)
{
int classes = 20;
- int i,n;
+ int i;
- for(i = 0; i < side*side; ++i){
- int row = i / side;
- int col = i % side;
- for(n = 0; n < num; ++n){
- int p_index = side*side*classes + i*num + n;
- int box_index = side*side*(classes + num) + (i*num + n)*4;
- int class_index = i*classes;
- float scale = predictions[p_index];
- int class = max_index(predictions+class_index, classes);
- float prob = scale * predictions[class_index + class];
- if(prob > thresh){
- int width = sqrt(prob)*5 + 1;
- printf("%f %s\n", prob, voc_names[class]);
- float red = get_color(0,class,classes);
- float green = get_color(1,class,classes);
- float blue = get_color(2,class,classes);
- box b = float_to_box(predictions+box_index);
- b.x = (b.x + col)/side;
- b.y = (b.y + row)/side;
- b.w = b.w*b.w;
- b.h = b.h*b.h;
+ for(i = 0; i < num; ++i){
+ int class = max_index(probs[i], classes);
+ float prob = probs[i][class];
+ if(prob > thresh){
+ int width = pow(prob, 1./3.)*10 + 1;
+ printf("%f %s\n", prob, voc_names[class]);
+ float red = get_color(0,class,classes);
+ float green = get_color(1,class,classes);
+ float blue = get_color(2,class,classes);
+ //red = green = blue = 0;
+ box b = boxes[i];
- int left = (b.x-b.w/2)*im.w;
- int right = (b.x+b.w/2)*im.w;
- int top = (b.y-b.h/2)*im.h;
- int bot = (b.y+b.h/2)*im.h;
- draw_box_width(im, left, top, right, bot, width, red, green, blue);
- }
+ int left = (b.x-b.w/2.)*im.w;
+ int right = (b.x+b.w/2.)*im.w;
+ int top = (b.y-b.h/2.)*im.h;
+ int bot = (b.y+b.h/2.)*im.h;
+ draw_box_width(im, left, top, right, bot, width, red, green, blue);
}
}
show_image(im, label);
@@ -52,7 +41,12 @@
void train_swag(char *cfgfile, char *weightfile)
{
+ //char *train_images = "/home/pjreddie/data/voc/person_detection/2010_person.txt";
+ //char *train_images = "/home/pjreddie/data/people-art/train.txt";
+ //char *train_images = "/home/pjreddie/data/voc/test/2012_trainval.txt";
char *train_images = "/home/pjreddie/data/voc/test/train.txt";
+ //char *train_images = "/home/pjreddie/data/voc/test/train_all.txt";
+ //char *train_images = "/home/pjreddie/data/voc/test/2007_trainval.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
data_seed = time(0);
@@ -116,7 +110,7 @@
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
- printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
+ printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
@@ -189,6 +183,9 @@
srand(time(0));
char *base = "results/comp4_det_test_";
+ //base = "/home/pjreddie/comp4_det_test_";
+ //list *plist = get_paths("/home/pjreddie/data/people-art/test.txt");
+ //list *plist = get_paths("/home/pjreddie/data/cubist/test.txt");
list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
char **paths = (char **)list_to_array(plist);
@@ -216,7 +213,7 @@
int nms = 1;
float iou_thresh = .5;
- int nthreads = 8;
+ int nthreads = 2;
image *val = calloc(nthreads, sizeof(image));
image *val_resized = calloc(nthreads, sizeof(image));
image *buf = calloc(nthreads, sizeof(image));
@@ -256,7 +253,7 @@
int w = val[t].w;
int h = val[t].h;
convert_swag_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
- if (nms) do_nms(boxes, probs, side*side*l.n, classes, iou_thresh);
+ if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
print_swag_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
free(id);
free_image(val[t]);
@@ -315,8 +312,6 @@
image sized = resize_image(orig, net.w, net.h);
char *id = basecfg(path);
float *predictions = network_predict(net, sized.data);
- int w = orig.w;
- int h = orig.h;
convert_swag_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
@@ -362,12 +357,17 @@
if(weightfile){
load_weights(&net, weightfile);
}
- region_layer layer = net.layers[net.n-1];
+ region_layer l = net.layers[net.n-1];
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
char buff[256];
char *input = buff;
+ int j;
+ float nms=.5;
+ box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
+ float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
+ for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
while(1){
if(filename){
strncpy(input, filename, 256);
@@ -384,7 +384,10 @@
time=clock();
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
- draw_swag(im, predictions, layer.side, layer.n, "predictions", thresh);
+ convert_swag_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
+ if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
+ draw_swag(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
+
show_image(sized, "resized");
free_image(im);
free_image(sized);
@@ -396,6 +399,48 @@
}
}
+
+/*
+#ifdef OPENCV
+image ipl_to_image(IplImage* src);
+#include "opencv2/highgui/highgui_c.h"
+#include "opencv2/imgproc/imgproc_c.h"
+
+void demo_swag(char *cfgfile, char *weightfile, float thresh)
+{
+network net = parse_network_cfg(cfgfile);
+if(weightfile){
+load_weights(&net, weightfile);
+}
+region_layer layer = net.layers[net.n-1];
+CvCapture *capture = cvCaptureFromCAM(-1);
+set_batch_network(&net, 1);
+srand(2222222);
+while(1){
+IplImage* frame = cvQueryFrame(capture);
+image im = ipl_to_image(frame);
+cvReleaseImage(&frame);
+rgbgr_image(im);
+
+image sized = resize_image(im, net.w, net.h);
+float *X = sized.data;
+float *predictions = network_predict(net, X);
+draw_swag(im, predictions, layer.side, layer.n, "predictions", thresh);
+free_image(im);
+free_image(sized);
+cvWaitKey(10);
+}
+}
+#else
+void demo_swag(char *cfgfile, char *weightfile, float thresh){}
+#endif
+ */
+
+void demo_swag(char *cfgfile, char *weightfile, float thresh);
+#ifndef GPU
+void demo_swag(char *cfgfile, char *weightfile, float thresh){}
+#endif
+
void run_swag(int argc, char **argv)
{
float thresh = find_float_arg(argc, argv, "-thresh", .2);
@@ -411,4 +456,5 @@
else if(0==strcmp(argv[2], "train")) train_swag(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_swag(cfg, weights);
else if(0==strcmp(argv[2], "recall")) validate_swag_recall(cfg, weights);
+ else if(0==strcmp(argv[2], "demo")) demo_swag(cfg, weights, thresh);
}
diff --git a/src/swag_kernels.cu b/src/swag_kernels.cu
new file mode 100644
index 0000000..5cba15c
--- /dev/null
+++ b/src/swag_kernels.cu
@@ -0,0 +1,61 @@
+extern "C" {
+#include "network.h"
+#include "region_layer.h"
+#include "detection_layer.h"
+#include "cost_layer.h"
+#include "utils.h"
+#include "parser.h"
+#include "box.h"
+#include "image.h"
+}
+
+#ifdef OPENCV
+#include "opencv2/highgui/highgui.hpp"
+#include "opencv2/imgproc/imgproc.hpp"
+extern "C" image ipl_to_image(IplImage* src);
+extern "C" void convert_swag_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
+extern "C" void draw_swag(image im, int num, float thresh, box *boxes, float **probs, char *label);
+
+extern "C" void demo_swag(char *cfgfile, char *weightfile, float thresh)
+{
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ region_layer l = net.layers[net.n-1];
+ cv::VideoCapture cap(0);
+
+ set_batch_network(&net, 1);
+ srand(2222222);
+ float nms = .4;
+ int j;
+ box *boxes = (box *)calloc(l.side*l.side*l.n, sizeof(box));
+ float **probs = (float **)calloc(l.side*l.side*l.n, sizeof(float *));
+ for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *));
+
+ while(1){
+ cv::Mat frame_m;
+ cap >> frame_m;
+ IplImage frame = frame_m;
+ image im = ipl_to_image(&frame);
+ rgbgr_image(im);
+
+ image sized = resize_image(im, net.w, net.h);
+ float *X = sized.data;
+ float *predictions = network_predict(net, X);
+ convert_swag_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
+ if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
+ printf("\033[2J");
+ printf("\033[1;1H");
+ printf("\nObjects:\n\n");
+ draw_swag(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
+
+ free_image(im);
+ free_image(sized);
+ cvWaitKey(1);
+ }
+}
+#else
+extern "C" void demo_swag(char *cfgfile, char *weightfile, float thresh){}
+#endif
+
--
Gitblit v1.10.0