From 8fd18add6e060a433629fae3fa2a7ef75df4644e Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 04 Nov 2015 03:23:42 +0000
Subject: [PATCH] CVPR Experiments

---
 src/swag.c |  232 ++++++++++++++++++++++++++++++++++++++++++++++-----------
 1 files changed, 186 insertions(+), 46 deletions(-)

diff --git a/src/swag.c b/src/swag.c
index 7058df5..4dc6bf9 100644
--- a/src/swag.c
+++ b/src/swag.c
@@ -1,4 +1,5 @@
 #include "network.h"
+#include "region_layer.h"
 #include "detection_layer.h"
 #include "cost_layer.h"
 #include "utils.h"
@@ -11,42 +12,28 @@
 
 char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
 
-void draw_swag(image im, float *box, int side, int objectness, char *label, float thresh)
+void draw_swag(image im, int num, float thresh, box *boxes, float **probs, char *label)
 {
     int classes = 20;
-    int elems = 4+classes+objectness;
-    int j;
-    int r, c;
+    int i;
 
-    for(r = 0; r < side; ++r){
-        for(c = 0; c < side; ++c){
-            j = (r*side + c) * elems;
-            float scale = 1;
-            if(objectness) scale = 1 - box[j++];
-            int class = max_index(box+j, classes);
-            if(scale * box[j+class] > thresh){
-                int width = sqrt(scale*box[j+class])*5 + 1;
-                printf("%f %s\n", scale * box[j+class], voc_names[class]);
-                float red = get_color(0,class,classes);
-                float green = get_color(1,class,classes);
-                float blue = get_color(2,class,classes);
+    for(i = 0; i < num; ++i){
+        int class = max_index(probs[i], classes);
+        float prob = probs[i][class];
+        if(prob > thresh){
+            int width = pow(prob, 1./3.)*10 + 1;
+            printf("%f %s\n", prob, voc_names[class]);
+            float red = get_color(0,class,classes);
+            float green = get_color(1,class,classes);
+            float blue = get_color(2,class,classes);
+            //red = green = blue = 0;
+            box b = boxes[i];
 
-                j += classes;
-                float x = box[j+0];
-                float y = box[j+1];
-                x = (x+c)/side;
-                y = (y+r)/side;
-                float w = box[j+2]; //*maxwidth;
-                float h = box[j+3]; //*maxheight;
-                h = h*h;
-                w = w*w;
-
-                int left  = (x-w/2)*im.w;
-                int right = (x+w/2)*im.w;
-                int top   = (y-h/2)*im.h;
-                int bot   = (y+h/2)*im.h;
-                draw_box_width(im, left, top, right, bot, width, red, green, blue);
-            }
+            int left  = (b.x-b.w/2.)*im.w;
+            int right = (b.x+b.w/2.)*im.w;
+            int top   = (b.y-b.h/2.)*im.h;
+            int bot   = (b.y+b.h/2.)*im.h;
+            draw_box_width(im, left, top, right, bot, width, red, green, blue);
         }
     }
     show_image(im, label);
@@ -54,7 +41,12 @@
 
 void train_swag(char *cfgfile, char *weightfile)
 {
+    //char *train_images = "/home/pjreddie/data/voc/person_detection/2010_person.txt";
+    //char *train_images = "/home/pjreddie/data/people-art/train.txt";
+    //char *train_images = "/home/pjreddie/data/voc/test/2012_trainval.txt";
     char *train_images = "/home/pjreddie/data/voc/test/train.txt";
+    //char *train_images = "/home/pjreddie/data/voc/test/train_all.txt";
+    //char *train_images = "/home/pjreddie/data/voc/test/2007_trainval.txt";
     char *backup_directory = "/home/pjreddie/backup/";
     srand(time(0));
     data_seed = time(0);
@@ -75,6 +67,7 @@
 
     int side = l.side;
     int classes = l.classes;
+    float jitter = l.jitter;
 
     list *plist = get_paths(train_images);
     //int N = plist->size;
@@ -87,6 +80,7 @@
     args.n = imgs;
     args.m = plist->size;
     args.classes = classes;
+    args.jitter = jitter;
     args.num_boxes = side;
     args.d = &buffer;
     args.type = REGION_DATA;
@@ -103,20 +97,20 @@
 
         printf("Loaded: %lf seconds\n", sec(clock()-time));
 
-/*
-        image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
-        image copy = copy_image(im);
-        draw_swag(copy, train.y.vals[113], 7, "truth");
-        cvWaitKey(0);
-        free_image(copy);
-        */
+        /*
+           image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
+           image copy = copy_image(im);
+           draw_swag(copy, train.y.vals[113], 7, "truth");
+           cvWaitKey(0);
+           free_image(copy);
+         */
 
         time=clock();
         float loss = train_network(net, train);
         if (avg_loss < 0) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
 
-        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
+        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
         if(i%1000==0){
             char buff[256];
             sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
@@ -129,7 +123,7 @@
     save_weights(net, buff);
 }
 
-void convert_swag_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes)
+void convert_swag_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
 {
     int i,j,n;
     //int per_cell = 5*num+classes;
@@ -150,6 +144,9 @@
                 float prob = scale*predictions[class_index+j];
                 probs[index][j] = (prob > thresh) ? prob : 0;
             }
+            if(only_objectness){
+                probs[index][0] = scale;
+            }
         }
     }
 }
@@ -186,6 +183,9 @@
     srand(time(0));
 
     char *base = "results/comp4_det_test_";
+    //base = "/home/pjreddie/comp4_det_test_";
+    //list *plist = get_paths("/home/pjreddie/data/people-art/test.txt");
+    //list *plist = get_paths("/home/pjreddie/data/cubist/test.txt");
     list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
     char **paths = (char **)list_to_array(plist);
 
@@ -213,7 +213,7 @@
     int nms = 1;
     float iou_thresh = .5;
 
-    int nthreads = 8;
+    int nthreads = 2;
     image *val = calloc(nthreads, sizeof(image));
     image *val_resized = calloc(nthreads, sizeof(image));
     image *buf = calloc(nthreads, sizeof(image));
@@ -252,8 +252,8 @@
             float *predictions = network_predict(net, X);
             int w = val[t].w;
             int h = val[t].h;
-            convert_swag_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes);
-            if (nms) do_nms(boxes, probs, side*side*l.n, classes, iou_thresh);
+            convert_swag_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
+            if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
             print_swag_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
             free(id);
             free_image(val[t]);
@@ -263,6 +263,93 @@
     fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
 }
 
+void validate_swag_recall(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    char *base = "results/comp4_det_test_";
+    list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
+    char **paths = (char **)list_to_array(plist);
+
+    layer l = net.layers[net.n-1];
+    int classes = l.classes;
+    int square = l.sqrt;
+    int side = l.side;
+
+    int j, k;
+    FILE **fps = calloc(classes, sizeof(FILE *));
+    for(j = 0; j < classes; ++j){
+        char buff[1024];
+        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
+        fps[j] = fopen(buff, "w");
+    }
+    box *boxes = calloc(side*side*l.n, sizeof(box));
+    float **probs = calloc(side*side*l.n, sizeof(float *));
+    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
+
+    int m = plist->size;
+    int i=0;
+
+    float thresh = .001;
+    int nms = 0;
+    float iou_thresh = .5;
+    float nms_thresh = .5;
+
+    int total = 0;
+    int correct = 0;
+    int proposals = 0;
+    float avg_iou = 0;
+
+    for(i = 0; i < m; ++i){
+        char *path = paths[i];
+        image orig = load_image_color(path, 0, 0);
+        image sized = resize_image(orig, net.w, net.h);
+        char *id = basecfg(path);
+        float *predictions = network_predict(net, sized.data);
+        convert_swag_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
+        if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
+
+        char *labelpath = find_replace(path, "images", "labels");
+        labelpath = find_replace(labelpath, "JPEGImages", "labels");
+        labelpath = find_replace(labelpath, ".jpg", ".txt");
+        labelpath = find_replace(labelpath, ".JPEG", ".txt");
+
+        int num_labels = 0;
+        box_label *truth = read_boxes(labelpath, &num_labels);
+        for(k = 0; k < side*side*l.n; ++k){
+            if(probs[k][0] > thresh){
+                ++proposals;
+            }
+        }
+        for (j = 0; j < num_labels; ++j) {
+            ++total;
+            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
+            float best_iou = 0;
+            for(k = 0; k < side*side*l.n; ++k){
+                float iou = box_iou(boxes[k], t);
+                if(probs[k][0] > thresh && iou > best_iou){
+                    best_iou = iou;
+                }
+            }
+            avg_iou += best_iou;
+            if(best_iou > iou_thresh){
+                ++correct;
+            }
+        }
+
+        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
+        free(id);
+        free_image(orig);
+        free_image(sized);
+    }
+}
+
 void test_swag(char *cfgfile, char *weightfile, char *filename, float thresh)
 {
 
@@ -270,12 +357,17 @@
     if(weightfile){
         load_weights(&net, weightfile);
     }
-    detection_layer layer = get_network_detection_layer(net);
+    region_layer l = net.layers[net.n-1];
     set_batch_network(&net, 1);
     srand(2222222);
     clock_t time;
     char buff[256];
     char *input = buff;
+    int j;
+    float nms=.5;
+    box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
+    float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
+    for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
     while(1){
         if(filename){
             strncpy(input, filename, 256);
@@ -292,7 +384,11 @@
         time=clock();
         float *predictions = network_predict(net, X);
         printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
-        draw_swag(im, predictions, 7, layer.objectness, "predictions", thresh);
+        convert_swag_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
+        if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
+        draw_swag(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
+
+        show_image(sized, "resized");
         free_image(im);
         free_image(sized);
 #ifdef OPENCV
@@ -303,6 +399,48 @@
     }
 }
 
+
+/*
+#ifdef OPENCV
+image ipl_to_image(IplImage* src);
+#include "opencv2/highgui/highgui_c.h"
+#include "opencv2/imgproc/imgproc_c.h"
+
+void demo_swag(char *cfgfile, char *weightfile, float thresh)
+{
+network net = parse_network_cfg(cfgfile);
+if(weightfile){
+load_weights(&net, weightfile);
+}
+region_layer layer = net.layers[net.n-1];
+CvCapture *capture = cvCaptureFromCAM(-1);
+set_batch_network(&net, 1);
+srand(2222222);
+while(1){
+IplImage* frame = cvQueryFrame(capture);
+image im = ipl_to_image(frame);
+cvReleaseImage(&frame);
+rgbgr_image(im);
+
+image sized = resize_image(im, net.w, net.h);
+float *X = sized.data;
+float *predictions = network_predict(net, X);
+draw_swag(im, predictions, layer.side, layer.n, "predictions", thresh);
+free_image(im);
+free_image(sized);
+cvWaitKey(10);
+}
+}
+#else
+void demo_swag(char *cfgfile, char *weightfile, float thresh){}
+#endif
+ */
+
+void demo_swag(char *cfgfile, char *weightfile, float thresh);
+#ifndef GPU
+void demo_swag(char *cfgfile, char *weightfile, float thresh){}
+#endif
+
 void run_swag(int argc, char **argv)
 {
     float thresh = find_float_arg(argc, argv, "-thresh", .2);
@@ -317,4 +455,6 @@
     if(0==strcmp(argv[2], "test")) test_swag(cfg, weights, filename, thresh);
     else if(0==strcmp(argv[2], "train")) train_swag(cfg, weights);
     else if(0==strcmp(argv[2], "valid")) validate_swag(cfg, weights);
+    else if(0==strcmp(argv[2], "recall")) validate_swag_recall(cfg, weights);
+    else if(0==strcmp(argv[2], "demo")) demo_swag(cfg, weights, thresh);
 }

--
Gitblit v1.10.0