From 913d355ec1cf34aad71fdd75202fc3b0309e63a0 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 28 Jan 2016 20:30:38 +0000
Subject: [PATCH] lots of stuff
---
src/parser.c | 243 ++++++++++++++++++++++++++++++++++++++++--------
1 files changed, 203 insertions(+), 40 deletions(-)
diff --git a/src/parser.c b/src/parser.c
index 254da5c..a48f207 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -7,16 +7,19 @@
#include "crop_layer.h"
#include "cost_layer.h"
#include "convolutional_layer.h"
+#include "activation_layer.h"
#include "normalization_layer.h"
#include "deconvolutional_layer.h"
#include "connected_layer.h"
+#include "rnn_layer.h"
#include "maxpool_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "detection_layer.h"
-#include "region_layer.h"
#include "avgpool_layer.h"
+#include "local_layer.h"
#include "route_layer.h"
+#include "shortcut_layer.h"
#include "list.h"
#include "option_list.h"
#include "utils.h"
@@ -28,17 +31,20 @@
int is_network(section *s);
int is_convolutional(section *s);
+int is_activation(section *s);
+int is_local(section *s);
int is_deconvolutional(section *s);
int is_connected(section *s);
+int is_rnn(section *s);
int is_maxpool(section *s);
int is_avgpool(section *s);
int is_dropout(section *s);
int is_softmax(section *s);
int is_normalization(section *s);
int is_crop(section *s);
+int is_shortcut(section *s);
int is_cost(section *s);
int is_detection(section *s);
-int is_region(section *s);
int is_route(section *s);
list *read_cfg(char *filename);
@@ -80,6 +86,8 @@
int h;
int w;
int c;
+ int index;
+ int time_steps;
} size_params;
deconvolutional_layer parse_deconvolutional(list *options, size_params params)
@@ -109,6 +117,27 @@
return layer;
}
+local_layer parse_local(list *options, size_params params)
+{
+ int n = option_find_int(options, "filters",1);
+ int size = option_find_int(options, "size",1);
+ int stride = option_find_int(options, "stride",1);
+ int pad = option_find_int(options, "pad",0);
+ char *activation_s = option_find_str(options, "activation", "logistic");
+ ACTIVATION activation = get_activation(activation_s);
+
+ int batch,h,w,c;
+ h = params.h;
+ w = params.w;
+ c = params.c;
+ batch=params.batch;
+ if(!(h && w && c)) error("Layer before local layer must output image.");
+
+ local_layer layer = make_local_layer(batch,h,w,c,n,size,stride,pad,activation);
+
+ return layer;
+}
+
convolutional_layer parse_convolutional(list *options, size_params params)
{
int n = option_find_int(options, "filters",1);
@@ -125,8 +154,10 @@
batch=params.batch;
if(!(h && w && c)) error("Layer before convolutional layer must output image.");
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+ int binary = option_find_int_quiet(options, "binary", 0);
- convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize);
+ convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary);
+ layer.flipped = option_find_int_quiet(options, "flipped", 0);
char *weights = option_find_str(options, "weights", 0);
char *biases = option_find_str(options, "biases", 0);
@@ -138,13 +169,27 @@
return layer;
}
+layer parse_rnn(list *options, size_params params)
+{
+ int output = option_find_int(options, "output",1);
+ int hidden = option_find_int(options, "hidden",1);
+ char *activation_s = option_find_str(options, "activation", "logistic");
+ ACTIVATION activation = get_activation(activation_s);
+ int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+
+ layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize);
+
+ return l;
+}
+
connected_layer parse_connected(list *options, size_params params)
{
int output = option_find_int(options, "output",1);
char *activation_s = option_find_str(options, "activation", "logistic");
ACTIVATION activation = get_activation(activation_s);
+ int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
- connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation);
+ connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize);
char *weights = option_find_str(options, "weights", 0);
char *biases = option_find_str(options, "biases", 0);
@@ -158,8 +203,9 @@
softmax_layer parse_softmax(list *options, size_params params)
{
- int groups = option_find_int(options, "groups",1);
+ int groups = option_find_int_quiet(options, "groups",1);
softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups);
+ layer.temperature = option_find_float_quiet(options, "temperature", 1);
return layer;
}
@@ -168,35 +214,19 @@
int coords = option_find_int(options, "coords", 1);
int classes = option_find_int(options, "classes", 1);
int rescore = option_find_int(options, "rescore", 0);
- int joint = option_find_int(options, "joint", 0);
- int objectness = option_find_int(options, "objectness", 0);
- int background = option_find_int(options, "background", 0);
- detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness);
- return layer;
-}
-
-region_layer parse_region(list *options, size_params params)
-{
- int coords = option_find_int(options, "coords", 1);
- int classes = option_find_int(options, "classes", 1);
- int rescore = option_find_int(options, "rescore", 0);
int num = option_find_int(options, "num", 1);
int side = option_find_int(options, "side", 7);
- region_layer layer = make_region_layer(params.batch, params.inputs, num, side, classes, coords, rescore);
+ detection_layer layer = make_detection_layer(params.batch, params.inputs, num, side, classes, coords, rescore);
layer.softmax = option_find_int(options, "softmax", 0);
layer.sqrt = option_find_int(options, "sqrt", 0);
- layer.object_logistic = option_find_int(options, "object_logistic", 0);
- layer.class_logistic = option_find_int(options, "class_logistic", 0);
- layer.coord_logistic = option_find_int(options, "coord_logistic", 0);
-
layer.coord_scale = option_find_float(options, "coord_scale", 1);
layer.forced = option_find_int(options, "forced", 0);
layer.object_scale = option_find_float(options, "object_scale", 1);
layer.noobject_scale = option_find_float(options, "noobject_scale", 1);
layer.class_scale = option_find_float(options, "class_scale", 1);
- layer.jitter = option_find_float(options, "jitter", .1);
+ layer.jitter = option_find_float(options, "jitter", .2);
return layer;
}
@@ -282,6 +312,41 @@
return l;
}
+layer parse_shortcut(list *options, size_params params, network net)
+{
+ char *l = option_find(options, "from");
+ int index = atoi(l);
+ if(index < 0) index = params.index + index;
+
+ int batch = params.batch;
+ layer from = net.layers[index];
+
+ layer s = make_shortcut_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c);
+
+ char *activation_s = option_find_str(options, "activation", "linear");
+ ACTIVATION activation = get_activation(activation_s);
+ s.activation = activation;
+ return s;
+}
+
+
+layer parse_activation(list *options, size_params params)
+{
+ char *activation_s = option_find_str(options, "activation", "linear");
+ ACTIVATION activation = get_activation(activation_s);
+
+ layer l = make_activation_layer(params.batch, params.inputs, activation);
+
+ l.out_h = params.h;
+ l.out_w = params.w;
+ l.out_c = params.c;
+ l.h = params.h;
+ l.w = params.w;
+ l.c = params.c;
+
+ return l;
+}
+
route_layer parse_route(list *options, size_params params, network net)
{
char *l = option_find(options, "layers");
@@ -298,13 +363,14 @@
for(i = 0; i < n; ++i){
int index = atoi(l);
l = strchr(l, ',')+1;
+ if(index < 0) index = params.index + index;
layers[i] = index;
sizes[i] = net.layers[index].outputs;
}
int batch = params.batch;
route_layer layer = make_route_layer(batch, n, layers, sizes);
-
+
convolutional_layer first = net.layers[layers[0]];
layer.out_w = first.out_w;
layer.out_h = first.out_h;
@@ -341,7 +407,9 @@
net->momentum = option_find_float(options, "momentum", .9);
net->decay = option_find_float(options, "decay", .0001);
int subdivs = option_find_int(options, "subdivisions",1);
+ net->time_steps = option_find_int_quiet(options, "time_steps",1);
net->batch /= subdivs;
+ net->batch *= net->time_steps;
net->subdivisions = subdivs;
net->h = option_find_int_quiet(options, "height",0);
@@ -409,19 +477,27 @@
params.c = net.c;
params.inputs = net.inputs;
params.batch = net.batch;
+ params.time_steps = net.time_steps;
n = n->next;
int count = 0;
free_section(s);
while(n){
+ params.index = count;
fprintf(stderr, "%d: ", count);
s = (section *)n->val;
options = s->options;
layer l = {0};
if(is_convolutional(s)){
l = parse_convolutional(options, params);
+ }else if(is_local(s)){
+ l = parse_local(options, params);
+ }else if(is_activation(s)){
+ l = parse_activation(options, params);
}else if(is_deconvolutional(s)){
l = parse_deconvolutional(options, params);
+ }else if(is_rnn(s)){
+ l = parse_rnn(options, params);
}else if(is_connected(s)){
l = parse_connected(options, params);
}else if(is_crop(s)){
@@ -430,8 +506,6 @@
l = parse_cost(options, params);
}else if(is_detection(s)){
l = parse_detection(options, params);
- }else if(is_region(s)){
- l = parse_region(options, params);
}else if(is_softmax(s)){
l = parse_softmax(options, params);
}else if(is_normalization(s)){
@@ -442,6 +516,8 @@
l = parse_avgpool(options, params);
}else if(is_route(s)){
l = parse_route(options, params, net);
+ }else if(is_shortcut(s)){
+ l = parse_shortcut(options, params, net);
}else if(is_dropout(s)){
l = parse_dropout(options, params);
l.output = net.layers[count-1].output;
@@ -459,13 +535,13 @@
net.layers[count] = l;
free_section(s);
n = n->next;
+ ++count;
if(n){
params.h = l.out_h;
params.w = l.out_w;
params.c = l.out_c;
params.inputs = l.outputs;
}
- ++count;
}
free_list(sections);
net.outputs = get_network_output_size(net);
@@ -473,6 +549,10 @@
return net;
}
+int is_shortcut(section *s)
+{
+ return (strcmp(s->type, "[shortcut]")==0);
+}
int is_crop(section *s)
{
return (strcmp(s->type, "[crop]")==0);
@@ -485,9 +565,9 @@
{
return (strcmp(s->type, "[detection]")==0);
}
-int is_region(section *s)
+int is_local(section *s)
{
- return (strcmp(s->type, "[region]")==0);
+ return (strcmp(s->type, "[local]")==0);
}
int is_deconvolutional(section *s)
{
@@ -499,11 +579,19 @@
return (strcmp(s->type, "[conv]")==0
|| strcmp(s->type, "[convolutional]")==0);
}
+int is_activation(section *s)
+{
+ return (strcmp(s->type, "[activation]")==0);
+}
int is_network(section *s)
{
return (strcmp(s->type, "[net]")==0
|| strcmp(s->type, "[network]")==0);
}
+int is_rnn(section *s)
+{
+ return (strcmp(s->type, "[rnn]")==0);
+}
int is_connected(section *s)
{
return (strcmp(s->type, "[conn]")==0
@@ -614,15 +702,34 @@
fclose(fp);
}
+void save_connected_weights(layer l, FILE *fp)
+{
+#ifdef GPU
+ if(gpu_index >= 0){
+ pull_connected_layer(l);
+ }
+#endif
+ fwrite(l.biases, sizeof(float), l.outputs, fp);
+ fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+ if (l.batch_normalize){
+ fwrite(l.scales, sizeof(float), l.outputs, fp);
+ fwrite(l.rolling_mean, sizeof(float), l.outputs, fp);
+ fwrite(l.rolling_variance, sizeof(float), l.outputs, fp);
+ }
+}
+
void save_weights_upto(network net, char *filename, int cutoff)
{
fprintf(stderr, "Saving weights to %s\n", filename);
FILE *fp = fopen(filename, "w");
if(!fp) file_error(filename);
- fwrite(&net.learning_rate, sizeof(float), 1, fp);
- fwrite(&net.momentum, sizeof(float), 1, fp);
- fwrite(&net.decay, sizeof(float), 1, fp);
+ int major = 0;
+ int minor = 1;
+ int revision = 0;
+ fwrite(&major, sizeof(int), 1, fp);
+ fwrite(&minor, sizeof(int), 1, fp);
+ fwrite(&revision, sizeof(int), 1, fp);
fwrite(net.seen, sizeof(int), 1, fp);
int i;
@@ -643,13 +750,21 @@
}
fwrite(l.filters, sizeof(float), num, fp);
} if(l.type == CONNECTED){
+ save_connected_weights(l, fp);
+ } if(l.type == RNN){
+ save_connected_weights(*(l.input_layer), fp);
+ save_connected_weights(*(l.self_layer), fp);
+ save_connected_weights(*(l.output_layer), fp);
+ } if(l.type == LOCAL){
#ifdef GPU
if(gpu_index >= 0){
- pull_connected_layer(l);
+ pull_local_layer(l);
}
#endif
+ int locations = l.out_w*l.out_h;
+ int size = l.size*l.size*l.c*l.n*locations;
fwrite(l.biases, sizeof(float), l.outputs, fp);
- fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+ fwrite(l.filters, sizeof(float), size, fp);
}
}
fclose(fp);
@@ -659,6 +774,38 @@
save_weights_upto(net, filename, net.n);
}
+void transpose_matrix(float *a, int rows, int cols)
+{
+ float *transpose = calloc(rows*cols, sizeof(float));
+ int x, y;
+ for(x = 0; x < rows; ++x){
+ for(y = 0; y < cols; ++y){
+ transpose[y*rows + x] = a[x*cols + y];
+ }
+ }
+ memcpy(a, transpose, rows*cols*sizeof(float));
+ free(transpose);
+}
+
+void load_connected_weights(layer l, FILE *fp, int transpose)
+{
+ fread(l.biases, sizeof(float), l.outputs, fp);
+ fread(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+ if(transpose){
+ transpose_matrix(l.weights, l.inputs, l.outputs);
+ }
+ if (l.batch_normalize && (!l.dontloadscales)){
+ fread(l.scales, sizeof(float), l.outputs, fp);
+ fread(l.rolling_mean, sizeof(float), l.outputs, fp);
+ fread(l.rolling_variance, sizeof(float), l.outputs, fp);
+ }
+#ifdef GPU
+ if(gpu_index >= 0){
+ push_connected_layer(l);
+ }
+#endif
+}
+
void load_weights_upto(network *net, char *filename, int cutoff)
{
fprintf(stderr, "Loading weights from %s...", filename);
@@ -666,11 +813,14 @@
FILE *fp = fopen(filename, "r");
if(!fp) file_error(filename);
- float garbage;
- fread(&garbage, sizeof(float), 1, fp);
- fread(&garbage, sizeof(float), 1, fp);
- fread(&garbage, sizeof(float), 1, fp);
+ int major;
+ int minor;
+ int revision;
+ fread(&major, sizeof(int), 1, fp);
+ fread(&minor, sizeof(int), 1, fp);
+ fread(&revision, sizeof(int), 1, fp);
fread(net->seen, sizeof(int), 1, fp);
+ int transpose = (major > 1000) || (minor > 1000);
int i;
for(i = 0; i < net->n && i < cutoff; ++i){
@@ -685,6 +835,9 @@
fread(l.rolling_variance, sizeof(float), l.n, fp);
}
fread(l.filters, sizeof(float), num, fp);
+ if (l.flipped) {
+ transpose_matrix(l.filters, l.c*l.size*l.size, l.n);
+ }
#ifdef GPU
if(gpu_index >= 0){
push_convolutional_layer(l);
@@ -702,11 +855,21 @@
#endif
}
if(l.type == CONNECTED){
+ load_connected_weights(l, fp, transpose);
+ }
+ if(l.type == RNN){
+ load_connected_weights(*(l.input_layer), fp, transpose);
+ load_connected_weights(*(l.self_layer), fp, transpose);
+ load_connected_weights(*(l.output_layer), fp, transpose);
+ }
+ if(l.type == LOCAL){
+ int locations = l.out_w*l.out_h;
+ int size = l.size*l.size*l.c*l.n*locations;
fread(l.biases, sizeof(float), l.outputs, fp);
- fread(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+ fread(l.filters, sizeof(float), size, fp);
#ifdef GPU
if(gpu_index >= 0){
- push_connected_layer(l);
+ push_local_layer(l);
}
#endif
}
--
Gitblit v1.10.0