From 956cfcaec993111426d91bcd61676b5fe0ebfd16 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 24 Feb 2014 21:02:53 +0000
Subject: [PATCH] Feature extraction using Imagenet

---
 src/convolutional_layer.c |   43 ++++++++++++++++++++++++++++++-------------
 1 files changed, 30 insertions(+), 13 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index cdfe9e1..8d8efc1 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -3,11 +3,21 @@
 #include "mini_blas.h"
 #include <stdio.h>
 
+int convolutional_out_height(convolutional_layer layer)
+{
+    return (layer.h-layer.size)/layer.stride + 1;
+}
+
+int convolutional_out_width(convolutional_layer layer)
+{
+    return (layer.w-layer.size)/layer.stride + 1;
+}
+
 image get_convolutional_image(convolutional_layer layer)
 {
     int h,w,c;
-    h = layer.out_h;
-    w = layer.out_w;
+    h = convolutional_out_height(layer);
+    w = convolutional_out_width(layer);
     c = layer.n;
     return float_to_image(h,w,c,layer.output);
 }
@@ -15,8 +25,8 @@
 image get_convolutional_delta(convolutional_layer layer)
 {
     int h,w,c;
-    h = layer.out_h;
-    w = layer.out_w;
+    h = convolutional_out_height(layer);
+    w = convolutional_out_width(layer);
     c = layer.n;
     return float_to_image(h,w,c,layer.delta);
 }
@@ -24,7 +34,6 @@
 convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
 {
     int i;
-    int out_h,out_w;
     size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
     convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
     layer->h = h;
@@ -41,21 +50,19 @@
     layer->biases = calloc(n, sizeof(float));
     layer->bias_updates = calloc(n, sizeof(float));
     layer->bias_momentum = calloc(n, sizeof(float));
-    float scale = 2./(size*size);
-    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = rand_normal()*scale;
+    float scale = 1./(size*size*c);
+    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform());
     for(i = 0; i < n; ++i){
         //layer->biases[i] = rand_normal()*scale + scale;
         layer->biases[i] = 0;
     }
-    out_h = (h-size)/stride + 1;
-    out_w = (w-size)/stride + 1;
+    int out_h = (h-size)/stride + 1;
+    int out_w = (w-size)/stride + 1;
 
     layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
     layer->output = calloc(out_h * out_w * n, sizeof(float));
     layer->delta  = calloc(out_h * out_w * n, sizeof(float));
     layer->activation = activation;
-    layer->out_h = out_h;
-    layer->out_w = out_w;
 
     fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
     srand(0);
@@ -65,6 +72,7 @@
 
 void forward_convolutional_layer(const convolutional_layer layer, float *in)
 {
+    int i;
     int m = layer.n;
     int k = layer.size*layer.size*layer.c;
     int n = ((layer.h-layer.size)/layer.stride + 1)*
@@ -79,12 +87,20 @@
     im2col_cpu(in,  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b);
     gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
 
+    for(i = 0; i < m*n; ++i){
+        layer.output[i] = activate(layer.output[i], layer.activation);
+    }
+    //for(i = 0; i < m*n; ++i) if(i%(m*n/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
+
 }
 
 void gradient_delta_convolutional_layer(convolutional_layer layer)
 {
     int i;
-    for(i = 0; i < layer.out_h*layer.out_w*layer.n; ++i){
+    int size = convolutional_out_height(layer)
+                *convolutional_out_width(layer)
+                *layer.n;
+    for(i = 0; i < size; ++i){
         layer.delta[i] *= gradient(layer.output[i], layer.activation);
     }
 }
@@ -92,7 +108,8 @@
 void learn_bias_convolutional_layer(convolutional_layer layer)
 {
     int i,j;
-    int size = layer.out_h*layer.out_w;
+    int size = convolutional_out_height(layer)
+                *convolutional_out_width(layer);
     for(i = 0; i < layer.n; ++i){
         float sum = 0;
         for(j = 0; j < size; ++j){

--
Gitblit v1.10.0