From 956cfcaec993111426d91bcd61676b5fe0ebfd16 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 24 Feb 2014 21:02:53 +0000
Subject: [PATCH] Feature extraction using Imagenet

---
 src/network.c |  120 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++---
 1 files changed, 113 insertions(+), 7 deletions(-)

diff --git a/src/network.c b/src/network.c
index 29e22e4..b2fc922 100644
--- a/src/network.c
+++ b/src/network.c
@@ -21,6 +21,76 @@
     return net;
 }
 
+void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
+{
+    int i;
+    fprintf(fp, "[convolutional]\n");
+    if(first) fprintf(fp,   "height=%d\n"
+                            "width=%d\n"
+                            "channels=%d\n",
+                            l->h, l->w, l->c);
+    fprintf(fp, "filters=%d\n"
+                "size=%d\n"
+                "stride=%d\n"
+                "activation=%s\n",
+                l->n, l->size, l->stride,
+                get_activation_string(l->activation));
+    fprintf(fp, "data=");
+    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
+    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
+    fprintf(fp, "\n\n");
+}
+void print_connected_cfg(FILE *fp, connected_layer *l, int first)
+{
+    int i;
+    fprintf(fp, "[connected]\n");
+    if(first) fprintf(fp, "input=%d\n", l->inputs);
+    fprintf(fp, "output=%d\n"
+                "activation=%s\n",
+                l->outputs,
+                get_activation_string(l->activation));
+    fprintf(fp, "data=");
+    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
+    for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
+    fprintf(fp, "\n\n");
+}
+
+void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
+{
+    fprintf(fp, "[maxpool]\n");
+    if(first) fprintf(fp,   "height=%d\n"
+                            "width=%d\n"
+                            "channels=%d\n",
+                            l->h, l->w, l->c);
+    fprintf(fp, "stride=%d\n\n", l->stride);
+}
+
+void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
+{
+    fprintf(fp, "[softmax]\n");
+    if(first) fprintf(fp, "input=%d\n", l->inputs);
+    fprintf(fp, "\n");
+}
+
+void save_network(network net, char *filename)
+{
+    FILE *fp = fopen(filename, "w");
+    if(!fp) file_error(filename);
+    int i;
+    for(i = 0; i < net.n; ++i)
+    {
+        if(net.types[i] == CONVOLUTIONAL)
+            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0);
+        else if(net.types[i] == CONNECTED)
+            print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
+        else if(net.types[i] == MAXPOOL)
+            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
+        else if(net.types[i] == SOFTMAX)
+            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
+    }
+    fclose(fp);
+}
+
 void forward_network(network net, float *input)
 {
     int i;
@@ -64,7 +134,7 @@
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer, step, momentum, 0);
+            update_connected_layer(layer, step, momentum, decay);
         }
     }
 }
@@ -121,9 +191,11 @@
     float *out = get_network_output(net);
     int i, k = get_network_output_size(net);
     for(i = 0; i < k; ++i){
+        printf("%f, ", out[i]);
         delta[i] = truth[i] - out[i];
         sum += delta[i]*delta[i];
     }
+    printf("\n");
     return sum;
 }
 
@@ -173,25 +245,31 @@
 
 float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay)
 {
-        forward_network(net, x);
-        int class = get_predicted_class_network(net);
-        float error = backward_network(net, x, y);
-        update_network(net, step, momentum, decay);
-        //return (y[class]?1:0);
-        return error;
+    forward_network(net, x);
+    //int class = get_predicted_class_network(net);
+    float error = backward_network(net, x, y);
+    update_network(net, step, momentum, decay);
+    //return (y[class]?1:0);
+    return error;
 }
 
 float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
 {
     int i;
     float error = 0;
+    int correct = 0;
     for(i = 0; i < n; ++i){
         int index = rand()%d.X.rows;
         error += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
+        float *y = d.y.vals[index];
+        int class = get_predicted_class_network(net);
+        correct += (y[class]?1:0);
+        //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
         //if((i+1)%10 == 0){
         //    printf("%d: %f\n", (i+1), (float)correct/(i+1));
         //}
     }
+    printf("Accuracy: %f\n",(float) correct/n);
     return error/n;
 }
 float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
@@ -252,6 +330,34 @@
     return 0;
 }
 
+int reset_network_size(network net, int h, int w, int c)
+{
+    int i;
+    for (i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer *layer = (convolutional_layer *)net.layers[i];
+            layer->h = h;
+            layer->w = w;
+            layer->c = c;
+            image output = get_convolutional_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }
+        else if(net.types[i] == MAXPOOL){
+            maxpool_layer *layer = (maxpool_layer *)net.layers[i];
+            layer->h = h;
+            layer->w = w;
+            layer->c = c;
+            image output = get_maxpool_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }
+    }
+    return 0;
+}
+
 int get_network_output_size(network net)
 {
     int i = net.n-1;

--
Gitblit v1.10.0