From 956cfcaec993111426d91bcd61676b5fe0ebfd16 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 24 Feb 2014 21:02:53 +0000
Subject: [PATCH] Feature extraction using Imagenet

---
 src/tests.c |  261 +++++++++++++++++++++++++++++++++++++++++++++-------
 1 files changed, 225 insertions(+), 36 deletions(-)

diff --git a/src/tests.c b/src/tests.c
index 47c9787..557f0fb 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -188,37 +188,64 @@
     free_data(train);
 }
 
-void test_full()
+void train_full()
 {
-    network net = parse_network_cfg("full.cfg");
+    network net = parse_network_cfg("cfg/imagenet.cfg");
     srand(2222222);
-    int i = 800;
+    int i = 0;
     char *labels[] = {"cat","dog"};
     float lr = .00001;
     float momentum = .9;
     float decay = 0.01;
-    while(i++ < 1000 || 1){
-        visualize_network(net);
-        cvWaitKey(100);
-        data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2, 256, 256);
+    while(1){
+        i += 1000;
+        data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256);
         image im = float_to_image(256, 256, 3,train.X.vals[0]);
-        show_image(im, "input");
-        cvWaitKey(100);
+        //visualize_network(net);
+        //cvWaitKey(100);
+        //show_image(im, "input");
+        //cvWaitKey(100);
         //scale_data_rows(train, 1./255.);
         normalize_data_rows(train);
         clock_t start = clock(), end;
-        float loss = train_network_sgd(net, train, 100, lr, momentum, decay);
+        float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
         end = clock();
         printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
         free_data(train);
-        if(i%100==0){
+        if(i%10000==0){
             char buff[256];
-            sprintf(buff, "backup_%d.cfg", i);
-            //save_network(net, buff);
+            sprintf(buff, "cfg/assira_backup_%d.cfg", i);
+            save_network(net, buff);
         }
         //lr *= .99;
     }
 }
+void test_full()
+{
+    network net = parse_network_cfg("cfg/backup_1300.cfg");
+    srand(2222222);
+    int i,j;
+    int total = 100;
+    char *labels[] = {"cat","dog"};
+    FILE *fp = fopen("preds.txt","w");
+    for(i = 0; i < total; ++i){
+        visualize_network(net);
+        cvWaitKey(100);
+        data test = load_data_image_pathfile_part("images/assira/test.list", i, total, labels, 2, 256, 256);
+        image im = float_to_image(256, 256, 3,test.X.vals[0]);
+        show_image(im, "input");
+        cvWaitKey(100);
+        normalize_data_rows(test);
+        for(j = 0; j < test.X.rows; ++j){
+            float *x = test.X.vals[j];
+            forward_network(net, x);
+            int class = get_predicted_class_network(net);
+            fprintf(fp, "%d\n", class);
+        }
+        free_data(test);
+    }
+    fclose(fp);
+}
 
 void test_nist()
 {
@@ -366,7 +393,7 @@
 
 void train_VOC()
 {
-    network net = parse_network_cfg("cfg/voc_backup_sig_20.cfg");
+    network net = parse_network_cfg("cfg/voc_start.cfg");
     srand(2222222);
     int i = 20;
     char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
@@ -374,7 +401,7 @@
     float momentum = .9;
     float decay = 0.01;
     while(i++ < 1000 || 1){
-        data train = load_data_image_pathfile_random("images/VOC2012/train_paths.txt", 1000, labels, 20, 300, 400);
+        data train = load_data_image_pathfile_random("images/VOC2012/val_paths.txt", 1000, labels, 20, 300, 400);
 
         image im = float_to_image(300, 400, 3,train.X.vals[0]);
         show_image(im, "input");
@@ -389,25 +416,58 @@
         free_data(train);
         if(i%10==0){
             char buff[256];
-            sprintf(buff, "cfg/voc_backup_sig_%d.cfg", i);
+            sprintf(buff, "cfg/voc_clean_ramp_%d.cfg", i);
             save_network(net, buff);
         }
         //lr *= .99;
     }
 }
 
-void features_VOC()
+int voc_size(int x)
 {
-    int i,j;
-    network net = parse_network_cfg("cfg/voc_features.cfg");
+    x = x-1+3;
+    x = x-1+3;
+    x = x-1+3;
+    x = (x-1)*2+1;
+    x = x-1+5;
+    x = (x-1)*2+1;
+    x = (x-1)*4+11;
+    return x;
+}
+
+image features_output_size(network net, IplImage *src, int outh, int outw)
+{
+    int h = voc_size(outh);
+    int w = voc_size(outw);
+    printf("%d %d\n", h, w);
+
+    IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
+    cvResize(src, sized, CV_INTER_LINEAR);
+    image im = ipl_to_image(sized);
+    reset_network_size(net, im.h, im.w, im.c);
+    forward_network(net, im.data);
+    image out = get_network_image_layer(net, 6);
+    //printf("%d %d\n%d %d\n", outh, out.h, outw, out.w);
+    free_image(im);
+    cvReleaseImage(&sized);
+    return copy_image(out);
+}
+
+void features_VOC(int part, int total)
+{
+    int i,j, count = 0;
+    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
     char *path_file = "images/VOC2012/all_paths.txt";
     char *out_dir = "voc_features/";
     list *paths = get_paths(path_file);
     node *n = paths->front;
-    while(n){
+    int size = paths->size;
+    for(count = 0; count < part*size/total; ++count) n = n->next;
+    while(n && count++ < (part+1)*size/total){
         char *path = (char *)n->val;
         char buff[1024];
         sprintf(buff, "%s%s.txt",out_dir, path);
+        printf("%s\n", path);
         FILE *fp = fopen(buff, "w");
         if(fp == 0) file_error(buff);
 
@@ -417,35 +477,163 @@
             printf("Cannot load file image %s\n", path);
             exit(0);
         }
+        int w = src->width;
+        int h = src->height;
+        int sbin = 8;
+        int interval = 10;
+        double scale = pow(2., 1./interval);
+        int m = (w<h)?w:h;
+        int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
+        image *ims = calloc(max_scale+interval, sizeof(image));
 
-        for(i = 0; i < 10; ++i){
-            int w = 1024 - 90*i; //PICKED WITH CAREFUL CROSS-VALIDATION!!!!
-            int h = (int)((double)w/src->width * src->height);
-            IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
-            cvResize(src, sized, CV_INTER_LINEAR);
-            image im = ipl_to_image(sized);
-            reset_network_size(net, im.h, im.w, im.c);
-            forward_network(net, im.data);
-            free_image(im);
-            image out = get_network_image_layer(net, 5);
+        for(i = 0; i < interval; ++i){
+            double factor = 1./pow(scale, i);
+            double ih =  round(h*factor);
+            double iw =  round(w*factor);
+            int ex_h = round(ih/4.) - 2;
+            int ex_w = round(iw/4.) - 2;
+            ims[i] = features_output_size(net, src, ex_h, ex_w);
+
+            ih =  round(h*factor);
+            iw =  round(w*factor);
+            ex_h = round(ih/8.) - 2;
+            ex_w = round(iw/8.) - 2;
+            ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
+            for(j = i+interval; j < max_scale; j += interval){
+                factor /= 2.;
+                ih =  round(h*factor);
+                iw =  round(w*factor);
+                ex_h = round(ih/8.) - 2;
+                ex_w = round(iw/8.) - 2;
+                ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
+            }
+        }
+        for(i = 0; i < max_scale+interval; ++i){
+            image out = ims[i];
+            //printf("%d, %d\n", out.h, out.w);
             fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
             for(j = 0; j < out.c*out.h*out.w; ++j){
                 if(j != 0)fprintf(fp, ",");
                 fprintf(fp, "%g", out.data[j]);
             }
             fprintf(fp, "\n");
-            out.c = 1;
-            show_image(out, "output");
-            cvWaitKey(10);
-            cvReleaseImage(&sized);
+            free_image(out);
         }
+        free(ims);
         fclose(fp);
+        cvReleaseImage(&src);
         n = n->next;
     }
 }
 
-int main()
+void features_VOC_image(char *image_file, char *image_dir, char *out_dir)
 {
+    int i,j;
+    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+    char image_path[1024];
+    sprintf(image_path, "%s%s",image_dir, image_file);
+    char out_path[1024];
+    sprintf(out_path, "%s%s.txt",out_dir, image_file);
+    printf("%s\n", image_file);
+    FILE *fp = fopen(out_path, "w");
+    if(fp == 0) file_error(out_path);
+
+    IplImage* src = 0;
+    if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
+    int w = src->width;
+    int h = src->height;
+    int sbin = 8;
+    int interval = 10;
+    double scale = pow(2., 1./interval);
+    int m = (w<h)?w:h;
+    int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
+    image *ims = calloc(max_scale+interval, sizeof(image));
+
+    for(i = 0; i < interval; ++i){
+        double factor = 1./pow(scale, i);
+        double ih =  round(h*factor);
+        double iw =  round(w*factor);
+        int ex_h = round(ih/4.) - 2;
+        int ex_w = round(iw/4.) - 2;
+        ims[i] = features_output_size(net, src, ex_h, ex_w);
+
+        ih =  round(h*factor);
+        iw =  round(w*factor);
+        ex_h = round(ih/8.) - 2;
+        ex_w = round(iw/8.) - 2;
+        ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
+        for(j = i+interval; j < max_scale; j += interval){
+            factor /= 2.;
+            ih =  round(h*factor);
+            iw =  round(w*factor);
+            ex_h = round(ih/8.) - 2;
+            ex_w = round(iw/8.) - 2;
+            ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
+        }
+    }
+    for(i = 0; i < max_scale+interval; ++i){
+        image out = ims[i];
+        fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
+        for(j = 0; j < out.c*out.h*out.w; ++j){
+            if(j != 0)fprintf(fp, ",");
+            fprintf(fp, "%g", out.data[j]);
+        }
+        fprintf(fp, "\n");
+        free_image(out);
+    }
+    free(ims);
+    fclose(fp);
+    cvReleaseImage(&src);
+}
+
+void test_distribution()
+{
+    IplImage* img = 0;
+    if( (img = cvLoadImage("im_small.jpg",-1)) == 0 ) file_error("im_small.jpg");
+    network net = parse_network_cfg("cfg/voc_features.cfg");
+    int h = img->height/8-2;
+    int w = img->width/8-2;
+    image out = features_output_size(net, img, h, w);
+    int c = out.c;
+    out.c = 1;
+    show_image(out, "output");
+    out.c = c;
+    image input = ipl_to_image(img);
+    show_image(input, "input");
+    CvScalar s;
+    int i,j;
+    image affects = make_image(input.h, input.w, 1);
+    int count = 0;
+    for(i = 0; i<img->height; i += 1){
+        for(j = 0; j < img->width; j += 1){
+            IplImage *copy = cvCloneImage(img);
+            s=cvGet2D(copy,i,j); // get the (i,j) pixel value
+            printf("%d/%d\n", count++, img->height*img->width);
+            s.val[0]=0;
+            s.val[1]=0;
+            s.val[2]=0;
+            cvSet2D(copy,i,j,s); // set the (i,j) pixel value
+            image mod = features_output_size(net, copy, h, w);
+            image dist = image_distance(out, mod);
+            show_image(affects, "affects");
+            cvWaitKey(1);
+            cvReleaseImage(&copy);
+            //affects.data[i*affects.w + j] += dist.data[3*dist.w+5];
+            affects.data[i*affects.w + j] += dist.data[1*dist.w+1];
+            free_image(mod);
+            free_image(dist);
+        }
+    }
+    show_image(affects, "Origins");
+    cvWaitKey(0);
+    cvWaitKey(0);
+}
+
+
+int main(int argc, char *argv[])
+{
+    //train_full();
+    //test_distribution();
     //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
 
     //test_blas();
@@ -456,7 +644,8 @@
     //test_nist();
     //test_full();
     //train_VOC();
-    features_VOC();
+    features_VOC_image(argv[1], argv[2], argv[3]);
+    printf("Success!\n");
     //test_random_preprocess();
     //test_random_classify();
     //test_parser();

--
Gitblit v1.10.0