From 979d02126b1a597361934f86f50eeda31ff083fe Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 09 Feb 2015 21:27:58 +0000
Subject: [PATCH] Generalizing conv layer so deconv is easier
---
src/convolutional_layer.c | 42 +++++++++-----------
src/convolutional_kernels.cu | 45 +++++-----------------
src/convolutional_layer.h | 11 +++--
src/darknet.c | 22 ----------
4 files changed, 38 insertions(+), 82 deletions(-)
diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index 8645fbf..fcf2466 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -8,7 +8,7 @@
#include "cuda.h"
}
-__global__ void bias(int n, int size, float *biases, float *output)
+__global__ void bias_output_kernel(float *output, float *biases, int n, int size)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x;
int filter = blockIdx.y;
@@ -17,18 +17,16 @@
if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter];
}
-extern "C" void bias_output_gpu(const convolutional_layer layer)
+extern "C" void bias_output_gpu(float *output, float *biases, int batch, int n, int size)
{
- int size = convolutional_out_height(layer)*convolutional_out_width(layer);
-
dim3 dimBlock(BLOCK, 1, 1);
- dim3 dimGrid((size-1)/BLOCK + 1, layer.n, layer.batch);
+ dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
- bias<<<dimGrid, dimBlock>>>(layer.n, size, layer.biases_gpu, layer.output_gpu);
+ bias_output_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
check_error(cudaPeekAtLastError());
}
-__global__ void learn_bias(int batch, int n, int size, float *delta, float *bias_updates, float scale)
+__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size, float scale)
{
__shared__ float part[BLOCK];
int i,b;
@@ -48,36 +46,14 @@
}
}
-extern "C" void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
+extern "C" void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
{
- int size = convolutional_out_height(layer)*convolutional_out_width(layer);
- float alpha = 1./layer.batch;
+ float alpha = 1./batch;
- learn_bias<<<layer.n, BLOCK>>>(layer.batch, layer.n, size, layer.delta_gpu, layer.bias_updates_gpu, alpha);
+ backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size, alpha);
check_error(cudaPeekAtLastError());
}
-extern "C" void test_learn_bias(convolutional_layer l)
-{
- int i;
- int size = convolutional_out_height(l) * convolutional_out_width(l);
- for(i = 0; i < size*l.batch*l.n; ++i){
- l.delta[i] = rand_uniform();
- }
- for(i = 0; i < l.n; ++i){
- l.bias_updates[i] = rand_uniform();
- }
- cuda_push_array(l.delta_gpu, l.delta, size*l.batch*l.n);
- cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n);
- float *gpu = (float *) calloc(l.n, sizeof(float));
- cuda_pull_array(l.bias_updates_gpu, gpu, l.n);
- for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
- learn_bias_convolutional_layer_ongpu(l);
- learn_bias_convolutional_layer(l);
- cuda_pull_array(l.bias_updates_gpu, gpu, l.n);
- for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
-}
-
extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float *in)
{
int i;
@@ -86,7 +62,7 @@
int n = convolutional_out_height(layer)*
convolutional_out_width(layer);
- bias_output_gpu(layer);
+ bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n);
for(i = 0; i < layer.batch; ++i){
im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
@@ -106,8 +82,9 @@
int n = layer.size*layer.size*layer.c;
int k = convolutional_out_height(layer)*
convolutional_out_width(layer);
+
gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu);
- learn_bias_convolutional_layer_ongpu(layer);
+ backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k);
if(delta_gpu) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_gpu, 1);
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 6a172aa..2e25844 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -111,27 +111,37 @@
layer->batch*out_h * out_w * layer->n*sizeof(float));
}
-void bias_output(const convolutional_layer layer)
+void bias_output(float *output, float *biases, int batch, int n, int size)
{
int i,j,b;
- int out_h = convolutional_out_height(layer);
- int out_w = convolutional_out_width(layer);
- for(b = 0; b < layer.batch; ++b){
- for(i = 0; i < layer.n; ++i){
- for(j = 0; j < out_h*out_w; ++j){
- layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i];
+ for(b = 0; b < batch; ++b){
+ for(i = 0; i < n; ++i){
+ for(j = 0; j < size; ++j){
+ output[(b*n + i)*size + j] = biases[i];
}
}
}
}
+void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
+{
+ float alpha = 1./batch;
+ int i,b;
+ for(b = 0; b < batch; ++b){
+ for(i = 0; i < n; ++i){
+ bias_updates[i] += alpha * sum_array(delta+size*(i+b*n), size);
+ }
+ }
+}
+
+
void forward_convolutional_layer(const convolutional_layer layer, float *in)
{
int out_h = convolutional_out_height(layer);
int out_w = convolutional_out_width(layer);
int i;
- bias_output(layer);
+ bias_output(layer.output, layer.biases, layer.batch, layer.n, out_h*out_w);
int m = layer.n;
int k = layer.size*layer.size*layer.c;
@@ -151,19 +161,6 @@
activate_array(layer.output, m*n*layer.batch, layer.activation);
}
-void learn_bias_convolutional_layer(convolutional_layer layer)
-{
- float alpha = 1./layer.batch;
- int i,b;
- int size = convolutional_out_height(layer)
- *convolutional_out_width(layer);
- for(b = 0; b < layer.batch; ++b){
- for(i = 0; i < layer.n; ++i){
- layer.bias_updates[i] += alpha * sum_array(layer.delta+size*(i+b*layer.n), size);
- }
- }
-}
-
void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta)
{
float alpha = 1./layer.batch;
@@ -174,8 +171,7 @@
convolutional_out_width(layer);
gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
-
- learn_bias_convolutional_layer(layer);
+ backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k);
if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
diff --git a/src/convolutional_layer.h b/src/convolutional_layer.h
index c69686f..dcc48bb 100644
--- a/src/convolutional_layer.h
+++ b/src/convolutional_layer.h
@@ -45,10 +45,12 @@
void forward_convolutional_layer_gpu(convolutional_layer layer, float * in);
void backward_convolutional_layer_gpu(convolutional_layer layer, float * in, float * delta_gpu);
void update_convolutional_layer_gpu(convolutional_layer layer);
+
void push_convolutional_layer(convolutional_layer layer);
void pull_convolutional_layer(convolutional_layer layer);
-void learn_bias_convolutional_layer_ongpu(convolutional_layer layer);
-void bias_output_gpu(const convolutional_layer layer);
+
+void bias_output_gpu(float *output, float *biases, int batch, int n, int size);
+void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
#endif
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay);
@@ -59,14 +61,15 @@
void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta);
-void bias_output(const convolutional_layer layer);
+void bias_output(float *output, float *biases, int batch, int n, int size);
+void backward_bias(float *bias_updates, float *delta, int batch, int n, int size);
+
image get_convolutional_image(convolutional_layer layer);
image get_convolutional_delta(convolutional_layer layer);
image get_convolutional_filter(convolutional_layer layer, int i);
int convolutional_out_height(convolutional_layer layer);
int convolutional_out_width(convolutional_layer layer);
-void learn_bias_convolutional_layer(convolutional_layer layer);
#endif
diff --git a/src/darknet.c b/src/darknet.c
index 8bb5a74..0b93aa6 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -225,8 +225,7 @@
void train_imagenet(char *cfgfile, char *weightfile)
{
float avg_loss = -1;
- // TODO
- srand(0);
+ srand(time(0));
char *base = basename(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
@@ -585,25 +584,6 @@
cvWaitKey(0);
}
-#ifdef GPU
-void test_convolutional_layer()
-{
- network net = parse_network_cfg("cfg/nist_conv.cfg");
- int size = get_network_input_size(net);
- float *in = calloc(size, sizeof(float));
- int i;
- for(i = 0; i < size; ++i) in[i] = rand_normal();
- convolutional_layer layer = *(convolutional_layer *)net.layers[0];
- int out_size = convolutional_out_height(layer)*convolutional_out_width(layer)*layer.batch;
- cuda_compare(layer.output_gpu, layer.output, out_size, "nothing");
- cuda_compare(layer.biases_gpu, layer.biases, layer.n, "biases");
- cuda_compare(layer.filters_gpu, layer.filters, layer.n*layer.size*layer.size*layer.c, "filters");
- bias_output(layer);
- bias_output_gpu(layer);
- cuda_compare(layer.output_gpu, layer.output, out_size, "biased output");
-}
-#endif
-
void test_correct_nist()
{
network net = parse_network_cfg("cfg/nist_conv.cfg");
--
Gitblit v1.10.0