From 989ab8c38a02fa7ea9c25108151736c62e81c972 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 24 Apr 2015 17:27:50 +0000
Subject: [PATCH] IOU loss function

---
 src/convolutional_layer.c |  220 +++++++++++++++++++++----------------------------------
 1 files changed, 84 insertions(+), 136 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 6c7f947..cd357d3 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -1,7 +1,11 @@
 #include "convolutional_layer.h"
 #include "utils.h"
-#include "mini_blas.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "blas.h"
+#include "gemm.h"
 #include <stdio.h>
+#include <time.h>
 
 int convolutional_out_height(convolutional_layer layer)
 {
@@ -25,7 +29,7 @@
     h = convolutional_out_height(layer);
     w = convolutional_out_width(layer);
     c = layer.n;
-    return float_to_image(h,w,c,layer.output);
+    return float_to_image(w,h,c,layer.output);
 }
 
 image get_convolutional_delta(convolutional_layer layer)
@@ -34,19 +38,14 @@
     h = convolutional_out_height(layer);
     w = convolutional_out_width(layer);
     c = layer.n;
-    return float_to_image(h,w,c,layer.delta);
+    return float_to_image(w,h,c,layer.delta);
 }
 
-convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay)
+convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
 {
     int i;
-    size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
     convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
 
-    layer->learning_rate = learning_rate;
-    layer->momentum = momentum;
-    layer->decay = decay;
-
     layer->h = h;
     layer->w = w;
     layer->c = c;
@@ -58,36 +57,31 @@
 
     layer->filters = calloc(c*n*size*size, sizeof(float));
     layer->filter_updates = calloc(c*n*size*size, sizeof(float));
-    layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
 
     layer->biases = calloc(n, sizeof(float));
     layer->bias_updates = calloc(n, sizeof(float));
-    layer->bias_momentum = calloc(n, sizeof(float));
-    float scale = 1./(size*size*c);
-    //scale = .0001;
-    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform()-.5);
+    float scale = 1./sqrt(size*size*c);
+    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = 2*scale*rand_uniform() - scale;
     for(i = 0; i < n; ++i){
-        //layer->biases[i] = rand_normal()*scale + scale;
-        layer->biases[i] = .5;
+        layer->biases[i] = scale;
     }
     int out_h = convolutional_out_height(*layer);
     int out_w = convolutional_out_width(*layer);
 
-    layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
+    layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
     layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
     layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+
     #ifdef GPU
-    layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
-    layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
-    layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size);
+    layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size);
+    layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size);
 
-    layer->biases_cl = cl_make_array(layer->biases, n);
-    layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
-    layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
+    layer->biases_gpu = cuda_make_array(layer->biases, n);
+    layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n);
 
-    layer->col_image_cl = cl_make_array(layer->col_image, layer->batch*out_h*out_w*size*size*c);
-    layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
-    layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
+    layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*size*size*c);
+    layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n);
+    layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n);
     #endif
     layer->activation = activation;
 
@@ -96,43 +90,61 @@
     return layer;
 }
 
-void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
+void resize_convolutional_layer(convolutional_layer *layer, int h, int w)
 {
     layer->h = h;
     layer->w = w;
-    layer->c = c;
     int out_h = convolutional_out_height(*layer);
     int out_w = convolutional_out_width(*layer);
 
     layer->col_image = realloc(layer->col_image,
-                                layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
+                                out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
     layer->output = realloc(layer->output,
                                 layer->batch*out_h * out_w * layer->n*sizeof(float));
     layer->delta  = realloc(layer->delta,
                                 layer->batch*out_h * out_w * layer->n*sizeof(float));
+
+    #ifdef GPU
+    cuda_free(layer->col_image_gpu);
+    cuda_free(layer->delta_gpu);
+    cuda_free(layer->output_gpu);
+
+    layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
+    layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
+    layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
+    #endif
 }
 
-void bias_output(const convolutional_layer layer)
+void bias_output(float *output, float *biases, int batch, int n, int size)
 {
     int i,j,b;
-    int out_h = convolutional_out_height(layer);
-    int out_w = convolutional_out_width(layer);
-    for(b = 0; b < layer.batch; ++b){
-        for(i = 0; i < layer.n; ++i){
-            for(j = 0; j < out_h*out_w; ++j){
-                layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i];
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            for(j = 0; j < size; ++j){
+                output[(b*n + i)*size + j] = biases[i];
             }
         }
     }
 }
 
-void forward_convolutional_layer(const convolutional_layer layer, float *in)
+void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
+{
+    int i,b;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            bias_updates[i] += sum_array(delta+size*(i+b*n), size);
+        }
+    }
+}
+
+
+void forward_convolutional_layer(const convolutional_layer layer, network_state state)
 {
     int out_h = convolutional_out_height(layer);
     int out_w = convolutional_out_width(layer);
     int i;
 
-    bias_output(layer);
+    bias_output(layer.output, layer.biases, layer.batch, layer.n, out_h*out_w);
 
     int m = layer.n;
     int k = layer.size*layer.size*layer.c;
@@ -142,85 +154,61 @@
     float *b = layer.col_image;
     float *c = layer.output;
 
-    im2col_cpu(in, layer.batch, layer.c, layer.h, layer.w, 
-        layer.size, layer.stride, layer.pad, b);
-
     for(i = 0; i < layer.batch; ++i){
+        im2col_cpu(state.input, layer.c, layer.h, layer.w, 
+            layer.size, layer.stride, layer.pad, b);
         gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
         c += n*m;
-        in += layer.h*layer.w*layer.c;
-        b += k*n;
+        state.input += layer.c*layer.h*layer.w;
     }
-    /*
-    int i;
-    for(i = 0; i < m*n; ++i) printf("%f, ", layer.output[i]);
-    printf("\n");
-    */
     activate_array(layer.output, m*n*layer.batch, layer.activation);
 }
 
-void learn_bias_convolutional_layer(convolutional_layer layer)
-{
-    int i,b;
-    int size = convolutional_out_height(layer)
-        *convolutional_out_width(layer);
-    for(b = 0; b < layer.batch; ++b){
-        for(i = 0; i < layer.n; ++i){
-            layer.bias_updates[i] += mean_array(layer.delta+size*(i+b*layer.n), size);
-        }
-    }
-}
-
-void backward_convolutional_layer(convolutional_layer layer, float *delta)
+void backward_convolutional_layer(convolutional_layer layer, network_state state)
 {
     int i;
     int m = layer.n;
     int n = layer.size*layer.size*layer.c;
     int k = convolutional_out_height(layer)*
         convolutional_out_width(layer);
-    gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
-    learn_bias_convolutional_layer(layer);
 
-    float *a = layer.delta;
-    float *b = layer.col_image;
-    float *c = layer.filter_updates;
+    gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
+    backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k);
+
+    if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
 
     for(i = 0; i < layer.batch; ++i){
+        float *a = layer.delta + i*m*k;
+        float *b = layer.col_image;
+        float *c = layer.filter_updates;
+
+        float *im = state.input+i*layer.c*layer.h*layer.w;
+
+        im2col_cpu(im, layer.c, layer.h, layer.w, 
+                layer.size, layer.stride, layer.pad, b);
         gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
-        a += m*k;
-        b += k*n;
-    }
 
-    if(delta){
-        m = layer.size*layer.size*layer.c;
-        k = layer.n;
-        n = convolutional_out_height(layer)*
-            convolutional_out_width(layer);
+        if(state.delta){
+            a = layer.filters;
+            b = layer.delta + i*m*k;
+            c = layer.col_image;
 
-        a = layer.filters;
-        b = layer.delta;
-        c = layer.col_image;
+            gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
 
-        memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
-
-        for(i = 0; i < layer.batch; ++i){
-            gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
-            col2im_cpu(c, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta);
-            c += k*n;
-            delta += layer.h*layer.w*layer.c;
+            col2im_cpu(layer.col_image, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, state.delta+i*layer.c*layer.h*layer.w);
         }
     }
 }
 
-void update_convolutional_layer(convolutional_layer layer)
+void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
 {
     int size = layer.size*layer.size*layer.c*layer.n;
-    axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
-    scal_cpu(layer.n,layer.momentum, layer.bias_updates, 1);
+    axpy_cpu(layer.n, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1);
+    scal_cpu(layer.n, momentum, layer.bias_updates, 1);
 
-    scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1);
-    axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
-    scal_cpu(size, layer.momentum, layer.filter_updates, 1);
+    axpy_cpu(size, -decay*batch, layer.filters, 1, layer.filter_updates, 1);
+    axpy_cpu(size, learning_rate/batch, layer.filter_updates, 1, layer.filters, 1);
+    scal_cpu(size, momentum, layer.filter_updates, 1);
 }
 
 
@@ -229,42 +217,22 @@
     int h = layer.size;
     int w = layer.size;
     int c = layer.c;
-    return float_to_image(h,w,c,layer.filters+i*h*w*c);
+    return float_to_image(w,h,c,layer.filters+i*h*w*c);
 }
 
-image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
+image *get_filters(convolutional_layer layer)
 {
     image *filters = calloc(layer.n, sizeof(image));
-    int i,j,k,c;
-    if(!prev_filters){
-        for(i = 0; i < layer.n; ++i){
-            filters[i] = copy_image(get_convolutional_filter(layer, i));
-        }
-    }
-    else{
-        image base = prev_filters[0];
-        for(i = 0; i < layer.n; ++i){
-            image filter = get_convolutional_filter(layer, i);
-            filters[i] = make_image(base.h, base.w, base.c);
-            for(j = 0; j < layer.size; ++j){
-                for(k = 0; k < layer.size; ++k){
-                    for(c = 0; c < layer.c; ++c){
-                        float weight = get_pixel(filter, j, k, c);
-                        image prev_filter = copy_image(prev_filters[c]);
-                        scale_image(prev_filter, weight);
-                        add_into_image(prev_filter, filters[i], 0,0);
-                        free_image(prev_filter);
-                    }
-                }
-            }
-        }
+    int i;
+    for(i = 0; i < layer.n; ++i){
+        filters[i] = copy_image(get_convolutional_filter(layer, i));
     }
     return filters;
 }
 
 image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
 {
-    image *single_filters = weighted_sum_filters(layer, 0);
+    image *single_filters = get_filters(layer);
     show_images(single_filters, layer.n, window);
 
     image delta = get_convolutional_image(layer);
@@ -277,23 +245,3 @@
     return single_filters;
 }
 
-#ifdef GPU
-void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
-{
-    int m = layer.n;
-    int k = layer.size*layer.size*layer.c;
-    int n = convolutional_out_height(layer)*
-        convolutional_out_width(layer)*
-        layer.batch;
-
-    cl_write_array(layer.filters_cl, layer.filters, m*k);
-    cl_mem a = layer.filters_cl;
-    cl_mem b = layer.col_image_cl;
-    cl_mem c = layer.output_cl;
-    im2col_ongpu(in, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b);
-    gemm_ongpu(0,0,m,n,k,1,a,k,b,n,0,c,n);
-    activate_array_ongpu(layer.output_cl, m*n, layer.activation);
-    cl_read_array(layer.output_cl, layer.output, m*n);
-}
-#endif
-

--
Gitblit v1.10.0