From 989ab8c38a02fa7ea9c25108151736c62e81c972 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 24 Apr 2015 17:27:50 +0000
Subject: [PATCH] IOU loss function

---
 src/network.c |  547 ++++++++++++++++++++++++++++++++++++------------------
 1 files changed, 367 insertions(+), 180 deletions(-)

diff --git a/src/network.c b/src/network.c
index ed927a8..3247a31 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,134 +1,124 @@
 #include <stdio.h>
+#include <time.h>
 #include "network.h"
 #include "image.h"
 #include "data.h"
 #include "utils.h"
+#include "params.h"
 
+#include "crop_layer.h"
 #include "connected_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
+#include "detection_layer.h"
 #include "maxpool_layer.h"
+#include "cost_layer.h"
 #include "normalization_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
 
-network make_network(int n, int batch)
+char *get_layer_string(LAYER_TYPE a)
+{
+    switch(a){
+        case CONVOLUTIONAL:
+            return "convolutional";
+        case DECONVOLUTIONAL:
+            return "deconvolutional";
+        case CONNECTED:
+            return "connected";
+        case MAXPOOL:
+            return "maxpool";
+        case SOFTMAX:
+            return "softmax";
+        case DETECTION:
+            return "detection";
+        case NORMALIZATION:
+            return "normalization";
+        case DROPOUT:
+            return "dropout";
+        case CROP:
+            return "crop";
+        case COST:
+            return "cost";
+        default:
+            break;
+    }
+    return "none";
+}
+
+network make_network(int n)
 {
     network net;
     net.n = n;
-    net.batch = batch;
     net.layers = calloc(net.n, sizeof(void *));
     net.types = calloc(net.n, sizeof(LAYER_TYPE));
     net.outputs = 0;
     net.output = 0;
+    net.seen = 0;
+    net.batch = 0;
+    net.inputs = 0;
+    net.h = net.w = net.c = 0;
     #ifdef GPU
-    net.input_cl = 0;
+    net.input_gpu = calloc(1, sizeof(float *));
+    net.truth_gpu = calloc(1, sizeof(float *));
     #endif
     return net;
 }
 
-#ifdef GPU
-void forward_network(network net, float *input, int train)
-{
-    cl_setup();
-    size_t size = get_network_input_size(net);
-    if(!net.input_cl){
-        net.input_cl = clCreateBuffer(cl.context,
-            CL_MEM_READ_WRITE, size*sizeof(float), 0, &cl.error);
-        check_error(cl);
-    }
-    cl_write_array(net.input_cl, input, size);
-    cl_mem input_cl = net.input_cl;
-    int i;
-    for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer_gpu(layer, input_cl);
-            input_cl = layer.output_cl;
-            input = layer.output;
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer(layer, input, train);
-            input = layer.output;
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            forward_softmax_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            forward_maxpool_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == NORMALIZATION){
-            normalization_layer layer = *(normalization_layer *)net.layers[i];
-            forward_normalization_layer(layer, input);
-            input = layer.output;
-        }
-    }
-}
-
-#else
-
-void forward_network(network net, float *input, int train)
+void forward_network(network net, network_state state)
 {
     int i;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer(layer, input);
-            input = layer.output;
+            forward_convolutional_layer(*(convolutional_layer *)net.layers[i], state);
+        }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            forward_deconvolutional_layer(*(deconvolutional_layer *)net.layers[i], state);
+        }
+        else if(net.types[i] == DETECTION){
+            forward_detection_layer(*(detection_layer *)net.layers[i], state);
         }
         else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer(layer, input);
-            input = layer.output;
+            forward_connected_layer(*(connected_layer *)net.layers[i], state);
+        }
+        else if(net.types[i] == CROP){
+            forward_crop_layer(*(crop_layer *)net.layers[i], state);
+        }
+        else if(net.types[i] == COST){
+            forward_cost_layer(*(cost_layer *)net.layers[i], state);
         }
         else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            forward_softmax_layer(layer, input);
-            input = layer.output;
+            forward_softmax_layer(*(softmax_layer *)net.layers[i], state);
         }
         else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            forward_maxpool_layer(layer, input);
-            input = layer.output;
+            forward_maxpool_layer(*(maxpool_layer *)net.layers[i], state);
         }
         else if(net.types[i] == NORMALIZATION){
-            normalization_layer layer = *(normalization_layer *)net.layers[i];
-            forward_normalization_layer(layer, input);
-            input = layer.output;
+            forward_normalization_layer(*(normalization_layer *)net.layers[i], state);
         }
         else if(net.types[i] == DROPOUT){
-            if(!train) continue;
-            dropout_layer layer = *(dropout_layer *)net.layers[i];
-            forward_dropout_layer(layer, input);
+            forward_dropout_layer(*(dropout_layer *)net.layers[i], state);
         }
+        state.input = get_network_output_layer(net, i);
     }
 }
-#endif
 
 void update_network(network net)
 {
     int i;
+    int update_batch = net.batch*net.subdivisions;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer(layer);
+            update_convolutional_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay);
         }
-        else if(net.types[i] == MAXPOOL){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == SOFTMAX){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == NORMALIZATION){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            update_deconvolutional_layer(layer, net.learning_rate, net.momentum, net.decay);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer);
+            update_connected_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay);
         }
     }
 }
@@ -136,28 +126,32 @@
 float *get_network_output_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output;
+        return ((convolutional_layer *)net.layers[i]) -> output;
+    } else if(net.types[i] == DECONVOLUTIONAL){
+        return ((deconvolutional_layer *)net.layers[i]) -> output;
     } else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output;
+        return ((maxpool_layer *)net.layers[i]) -> output;
+    } else if(net.types[i] == DETECTION){
+        return ((detection_layer *)net.layers[i]) -> output;
     } else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.output;
+        return ((softmax_layer *)net.layers[i]) -> output;
     } else if(net.types[i] == DROPOUT){
         return get_network_output_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.output;
+        return ((connected_layer *)net.layers[i]) -> output;
+    } else if(net.types[i] == CROP){
+        return ((crop_layer *)net.layers[i]) -> output;
     } else if(net.types[i] == NORMALIZATION){
-        normalization_layer layer = *(normalization_layer *)net.layers[i];
-        return layer.output;
+        return ((normalization_layer *)net.layers[i]) -> output;
     }
     return 0;
 }
+
 float *get_network_output(network net)
 {
-    return get_network_output_layer(net, net.n-1);
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
+    return get_network_output_layer(net, i);
 }
 
 float *get_network_delta_layer(network net, int i)
@@ -165,13 +159,20 @@
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.delta;
+    } else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.delta;
     } else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.delta;
     } else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.delta;
+    } else if(net.types[i] == DETECTION){
+        detection_layer layer = *(detection_layer *)net.layers[i];
+        return layer.delta;
     } else if(net.types[i] == DROPOUT){
+        if(i == 0) return 0;
         return get_network_delta_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
@@ -180,29 +181,22 @@
     return 0;
 }
 
+float get_network_cost(network net)
+{
+    if(net.types[net.n-1] == COST){
+        return ((cost_layer *)net.layers[net.n-1])->output[0];
+    }
+    if(net.types[net.n-1] == DETECTION){
+        return ((detection_layer *)net.layers[net.n-1])->cost[0];
+    }
+    return 0;
+}
+
 float *get_network_delta(network net)
 {
     return get_network_delta_layer(net, net.n-1);
 }
 
-float calculate_error_network(network net, float *truth)
-{
-    float sum = 0;
-    float *delta = get_network_delta(net);
-    float *out = get_network_output(net);
-    int i;
-    for(i = 0; i < get_network_output_size(net)*net.batch; ++i){
-        //if(i %get_network_output_size(net) == 0) printf("\n");
-        //printf("%5.2f %5.2f, ", out[i], truth[i]);
-        //if(i == get_network_output_size(net)) printf("\n");
-        delta[i] = truth[i] - out[i];
-        //printf("%.10f, ", out[i]);
-        sum += delta[i]*delta[i];
-    }
-    //printf("\n");
-    return sum;
-}
-
 int get_predicted_class_network(network net)
 {
     float *out = get_network_output(net);
@@ -210,51 +204,70 @@
     return max_index(out, k);
 }
 
-float backward_network(network net, float *input, float *truth)
+void backward_network(network net, network_state state)
 {
-    float error = calculate_error_network(net, truth);
     int i;
-    float *prev_input;
-    float *prev_delta;
+    float *original_input = state.input;
     for(i = net.n-1; i >= 0; --i){
         if(i == 0){
-            prev_input = input;
-            prev_delta = 0;
+            state.input = original_input;
+            state.delta = 0;
         }else{
-            prev_input = get_network_output_layer(net, i-1);
-            prev_delta = get_network_delta_layer(net, i-1);
+            state.input = get_network_output_layer(net, i-1);
+            state.delta = get_network_delta_layer(net, i-1);
         }
+
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            backward_convolutional_layer(layer, prev_delta);
+            backward_convolutional_layer(layer, state);
+        } else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            backward_deconvolutional_layer(layer, state);
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
+            if(i != 0) backward_maxpool_layer(layer, state);
+        }
+        else if(net.types[i] == DROPOUT){
+            dropout_layer layer = *(dropout_layer *)net.layers[i];
+            backward_dropout_layer(layer, state);
+        }
+        else if(net.types[i] == DETECTION){
+            detection_layer layer = *(detection_layer *)net.layers[i];
+            backward_detection_layer(layer, state);
         }
         else if(net.types[i] == NORMALIZATION){
             normalization_layer layer = *(normalization_layer *)net.layers[i];
-            if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
+            if(i != 0) backward_normalization_layer(layer, state);
         }
         else if(net.types[i] == SOFTMAX){
             softmax_layer layer = *(softmax_layer *)net.layers[i];
-            if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
+            if(i != 0) backward_softmax_layer(layer, state);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            backward_connected_layer(layer, prev_input, prev_delta);
+            backward_connected_layer(layer, state);
+        }
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            backward_cost_layer(layer, state);
         }
     }
-    return error;
 }
 
 float train_network_datum(network net, float *x, float *y)
 {
-    forward_network(net, x, 1);
-    //int class = get_predicted_class_network(net);
-    float error = backward_network(net, x, y);
-    update_network(net);
-    //return (y[class]?1:0);
+    #ifdef GPU
+    if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
+    #endif
+    network_state state;
+    state.input = x;
+    state.truth = y;
+    state.train = 1;
+    forward_network(net, state);
+    backward_network(net, state);
+    float error = get_network_cost(net);
+    if((net.seen/net.batch)%net.subdivisions == 0) update_network(net);
     return error;
 }
 
@@ -264,87 +277,112 @@
     float *X = calloc(batch*d.X.cols, sizeof(float));
     float *y = calloc(batch*d.y.cols, sizeof(float));
 
-    int i,j;
+    int i;
     float sum = 0;
     for(i = 0; i < n; ++i){
-        for(j = 0; j < batch; ++j){
-            int index = rand()%d.X.rows;
-            memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
-            memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
-        }
+        net.seen += batch;
+        get_random_batch(d, batch, X, y);
         float err = train_network_datum(net, X, y);
         sum += err;
-        //train_network_datum(net, X, y);
-        /*
-        float *y = d.y.vals[index];
-        int class = get_predicted_class_network(net);
-        correct += (y[class]?1:0);
-        */
-
-/*
-        for(j = 0; j < d.y.cols*batch; ++j){
-            printf("%6.3f ", y[j]);
-        }
-        printf("\n");
-        for(j = 0; j < d.y.cols*batch; ++j){
-            printf("%6.3f ", get_network_output(net)[j]);
-        }
-        printf("\n");
-        printf("\n");
-        */
-
-
-        //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
-        //if((i+1)%10 == 0){
-        //    printf("%d: %f\n", (i+1), (float)correct/(i+1));
-        //}
     }
-    //printf("Accuracy: %f\n",(float) correct/n);
     free(X);
     free(y);
     return (float)sum/(n*batch);
 }
+
+float train_network(network net, data d)
+{
+    int batch = net.batch;
+    int n = d.X.rows / batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_next_batch(d, batch, i*batch, X, y);
+        net.seen += batch;
+        float err = train_network_datum(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
 float train_network_batch(network net, data d, int n)
 {
     int i,j;
+    network_state state;
+    state.train = 1;
     float sum = 0;
     int batch = 2;
     for(i = 0; i < n; ++i){
         for(j = 0; j < batch; ++j){
             int index = rand()%d.X.rows;
-            float *x = d.X.vals[index];
-            float *y = d.y.vals[index];
-            forward_network(net, x, 1);
-            sum += backward_network(net, x, y);
+            state.input = d.X.vals[index];
+            state.truth = d.y.vals[index];
+            forward_network(net, state);
+            backward_network(net, state);
+            sum += get_network_cost(net);
         }
         update_network(net);
     }
     return (float)sum/(n*batch);
 }
 
-
-void train_network(network net, data d)
+void set_batch_network(network *net, int b)
 {
+    net->batch = b;
     int i;
-    int correct = 0;
-    for(i = 0; i < d.X.rows; ++i){
-        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i]);
-        if(i%100 == 0){
-            visualize_network(net);
-            cvWaitKey(10);
+    for(i = 0; i < net->n; ++i){
+        if(net->types[i] == CONVOLUTIONAL){
+            convolutional_layer *layer = (convolutional_layer *)net->layers[i];
+            layer->batch = b;
+        }else if(net->types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == MAXPOOL){
+            maxpool_layer *layer = (maxpool_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == CONNECTED){
+            connected_layer *layer = (connected_layer *)net->layers[i];
+            layer->batch = b;
+        } else if(net->types[i] == DROPOUT){
+            dropout_layer *layer = (dropout_layer *) net->layers[i];
+            layer->batch = b;
+        } else if(net->types[i] == DETECTION){
+            detection_layer *layer = (detection_layer *) net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == SOFTMAX){
+            softmax_layer *layer = (softmax_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == COST){
+            cost_layer *layer = (cost_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == CROP){
+            crop_layer *layer = (crop_layer *)net->layers[i];
+            layer->batch = b;
         }
     }
-    visualize_network(net);
-    cvWaitKey(100);
-    fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
 }
 
+
 int get_network_input_size_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.h*layer.w*layer.c;
     }
+    if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.h*layer.w*layer.c;
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.h*layer.w*layer.c;
@@ -355,11 +393,18 @@
     } else if(net.types[i] == DROPOUT){
         dropout_layer layer = *(dropout_layer *) net.layers[i];
         return layer.inputs;
+    } else if(net.types[i] == DETECTION){
+        detection_layer layer = *(detection_layer *) net.layers[i];
+        return layer.inputs;
+    } else if(net.types[i] == CROP){
+        crop_layer layer = *(crop_layer *) net.layers[i];
+        return layer.c*layer.h*layer.w;
     }
     else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.inputs;
     }
+    fprintf(stderr, "Can't find input size\n");
     return 0;
 }
 
@@ -370,15 +415,29 @@
         image output = get_convolutional_image(layer);
         return output.h*output.w*output.c;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        image output = get_deconvolutional_image(layer);
+        return output.h*output.w*output.c;
+    }
+    else if(net.types[i] == DETECTION){
+        detection_layer layer = *(detection_layer *)net.layers[i];
+        return get_detection_layer_output_size(layer);
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         image output = get_maxpool_image(layer);
         return output.h*output.w*output.c;
     }
+    else if(net.types[i] == CROP){
+        crop_layer layer = *(crop_layer *) net.layers[i];
+        return layer.c*layer.crop_height*layer.crop_width;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.outputs;
-    } else if(net.types[i] == DROPOUT){
+    }
+    else if(net.types[i] == DROPOUT){
         dropout_layer layer = *(dropout_layer *) net.layers[i];
         return layer.inputs;
     }
@@ -386,6 +445,7 @@
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.inputs;
     }
+    fprintf(stderr, "Can't find output size\n");
     return 0;
 }
 
@@ -395,21 +455,31 @@
     for (i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer *layer = (convolutional_layer *)net.layers[i];
-            resize_convolutional_layer(layer, h, w, c);
+            resize_convolutional_layer(layer, h, w);
             image output = get_convolutional_image(*layer);
             h = output.h;
             w = output.w;
             c = output.c;
+        } else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i];
+            resize_deconvolutional_layer(layer, h, w);
+            image output = get_deconvolutional_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
         }else if(net.types[i] == MAXPOOL){
             maxpool_layer *layer = (maxpool_layer *)net.layers[i];
-            resize_maxpool_layer(layer, h, w, c);
+            resize_maxpool_layer(layer, h, w);
             image output = get_maxpool_image(*layer);
             h = output.h;
             w = output.w;
             c = output.c;
+        }else if(net.types[i] == DROPOUT){
+            dropout_layer *layer = (dropout_layer *)net.layers[i];
+            resize_dropout_layer(layer, h*w*c);
         }else if(net.types[i] == NORMALIZATION){
             normalization_layer *layer = (normalization_layer *)net.layers[i];
-            resize_normalization_layer(layer, h, w, c);
+            resize_normalization_layer(layer, h, w);
             image output = get_normalization_image(*layer);
             h = output.h;
             w = output.w;
@@ -423,7 +493,8 @@
 
 int get_network_output_size(network net)
 {
-    int i = net.n-1;
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
     return get_network_output_size_layer(net, i);
 }
 
@@ -432,12 +503,28 @@
     return get_network_input_size_layer(net, 0);
 }
 
+detection_layer *get_network_detection_layer(network net)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == DETECTION){
+            detection_layer *layer = (detection_layer *)net.layers[i];
+            return layer;
+        }
+    }
+    return 0;
+}
+
 image get_network_image_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return get_convolutional_image(layer);
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return get_deconvolutional_image(layer);
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return get_maxpool_image(layer);
@@ -446,6 +533,13 @@
         normalization_layer layer = *(normalization_layer *)net.layers[i];
         return get_normalization_image(layer);
     }
+    else if(net.types[i] == DROPOUT){
+        return get_network_image_layer(net, i-1);
+    }
+    else if(net.types[i] == CROP){
+        crop_layer layer = *(crop_layer *)net.layers[i];
+        return get_crop_image(layer);
+    }
     return make_empty_image(0,0,0);
 }
 
@@ -464,6 +558,7 @@
     image *prev = 0;
     int i;
     char buff[256];
+    //show_image(get_network_image_layer(net, 0), "Crop");
     for(i = 0; i < net.n; ++i){
         sprintf(buff, "Layer %d", i);
         if(net.types[i] == CONVOLUTIONAL){
@@ -477,19 +572,61 @@
     } 
 }
 
+void top_predictions(network net, int k, int *index)
+{
+    int size = get_network_output_size(net);
+    float *out = get_network_output(net);
+    top_k(out, size, k, index);
+}
+
+
 float *network_predict(network net, float *input)
 {
-    forward_network(net, input, 0);
+#ifdef GPU
+    if(gpu_index >= 0)  return network_predict_gpu(net, input);
+#endif
+
+    network_state state;
+    state.input = input;
+    state.truth = 0;
+    state.train = 0;
+    state.delta = 0;
+    forward_network(net, state);
     float *out = get_network_output(net);
     return out;
 }
 
+matrix network_predict_data_multi(network net, data test, int n)
+{
+    int i,j,b,m;
+    int k = get_network_output_size(net);
+    matrix pred = make_matrix(test.X.rows, k);
+    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    for(i = 0; i < test.X.rows; i += net.batch){
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+        }
+        for(m = 0; m < n; ++m){
+            float *out = network_predict(net, X);
+            for(b = 0; b < net.batch; ++b){
+                if(i+b == test.X.rows) break;
+                for(j = 0; j < k; ++j){
+                    pred.vals[i+b][j] += out[j+b*k]/n;
+                }
+            }
+        }
+    }
+    free(X);
+    return pred;   
+}
+
 matrix network_predict_data(network net, data test)
 {
     int i,j,b;
     int k = get_network_output_size(net);
     matrix pred = make_matrix(test.X.rows, k);
-    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    float *X = calloc(net.batch*test.X.cols, sizeof(float));
     for(i = 0; i < test.X.rows; i += net.batch){
         for(b = 0; b < net.batch; ++b){
             if(i+b == test.X.rows) break;
@@ -525,6 +662,12 @@
             image m = get_maxpool_image(layer);
             n = m.h*m.w*m.c;
         }
+        else if(net.types[i] == CROP){
+            crop_layer layer = *(crop_layer *)net.layers[i];
+            output = layer.output;
+            image m = get_crop_image(layer);
+            n = m.h*m.w*m.c;
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             output = layer.output;
@@ -545,10 +688,54 @@
     }
 }
 
+void compare_networks(network n1, network n2, data test)
+{
+    matrix g1 = network_predict_data(n1, test);
+    matrix g2 = network_predict_data(n2, test);
+    int i;
+    int a,b,c,d;
+    a = b = c = d = 0;
+    for(i = 0; i < g1.rows; ++i){
+        int truth = max_index(test.y.vals[i], test.y.cols);
+        int p1 = max_index(g1.vals[i], g1.cols);
+        int p2 = max_index(g2.vals[i], g2.cols);
+        if(p1 == truth){
+            if(p2 == truth) ++d;
+            else ++c;
+        }else{
+            if(p2 == truth) ++b;
+            else ++a;
+        }
+    }
+    printf("%5d %5d\n%5d %5d\n", a, b, c, d);
+    float num = pow((abs(b - c) - 1.), 2.);
+    float den = b + c;
+    printf("%f\n", num/den); 
+}
+
 float network_accuracy(network net, data d)
 {
     matrix guess = network_predict_data(net, d);
-    float acc = matrix_accuracy(d.y, guess);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
+    free_matrix(guess);
+    return acc;
+}
+
+float *network_accuracies(network net, data d)
+{
+    static float acc[2];
+    matrix guess = network_predict_data(net, d);
+    acc[0] = matrix_topk_accuracy(d.y, guess,1);
+    acc[1] = matrix_topk_accuracy(d.y, guess,5);
+    free_matrix(guess);
+    return acc;
+}
+
+
+float network_accuracy_multi(network net, data d, int n)
+{
+    matrix guess = network_predict_data_multi(net, d, n);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
     free_matrix(guess);
     return acc;
 }

--
Gitblit v1.10.0