From 989ab8c38a02fa7ea9c25108151736c62e81c972 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 24 Apr 2015 17:27:50 +0000
Subject: [PATCH] IOU loss function

---
 src/network_kernels.cu |   26 +++++++-------------------
 1 files changed, 7 insertions(+), 19 deletions(-)

diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index acc31d7..0b2bb97 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -20,8 +20,8 @@
 #include "dropout_layer.h"
 }
 
-extern "C" float * get_network_output_gpu_layer(network net, int i);
-extern "C" float * get_network_delta_gpu_layer(network net, int i);
+float * get_network_output_gpu_layer(network net, int i);
+float * get_network_delta_gpu_layer(network net, int i);
 float *get_network_output_gpu(network net);
 
 void forward_network_gpu(network net, network_state state)
@@ -64,7 +64,6 @@
     int i;
     float * original_input = state.input;
     for(i = net.n-1; i >= 0; --i){
-        //clock_t time = clock();
         if(i == 0){
             state.input = original_input;
             state.delta = 0;
@@ -72,6 +71,7 @@
             state.input = get_network_output_gpu_layer(net, i-1);
             state.delta = get_network_delta_gpu_layer(net, i-1);
         }
+
         if(net.types[i] == CONVOLUTIONAL){
             backward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
         }
@@ -102,10 +102,11 @@
 void update_network_gpu(network net)
 {
     int i;
+    int update_batch = net.batch*net.subdivisions;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
+            update_convolutional_layer_gpu(layer, update_batch, net.learning_rate, net.momentum, net.decay);
         }
         else if(net.types[i] == DECONVOLUTIONAL){
             deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
@@ -113,7 +114,7 @@
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
+            update_connected_layer_gpu(layer, update_batch, net.learning_rate, net.momentum, net.decay);
         }
     }
 }
@@ -181,7 +182,6 @@
 
 float train_network_datum_gpu(network net, float *x, float *y)
 {
-  //clock_t time = clock();
     network_state state;
     int x_size = get_network_input_size(net)*net.batch;
     int y_size = get_network_output_size(net)*net.batch;
@@ -195,22 +195,11 @@
     state.input = *net.input_gpu;
     state.truth = *net.truth_gpu;
     state.train = 1;
-  //printf("trans %f\n", sec(clock() - time));
-  //time = clock();
     forward_network_gpu(net, state);
-  //printf("forw %f\n", sec(clock() - time));
-  //time = clock();
     backward_network_gpu(net, state);
-  //printf("back %f\n", sec(clock() - time));
-  //time = clock();
-    update_network_gpu(net);
     float error = get_network_cost(net);
+    if ((net.seen / net.batch) % net.subdivisions == 0) update_network_gpu(net);
 
-    //print_letters(y, 50);
-    //float *out = get_network_output_gpu(net);
-    //print_letters(out, 50);
-  //printf("updt %f\n", sec(clock() - time));
-  //time = clock();
     return error;
 }
 
@@ -256,7 +245,6 @@
 
 float *network_predict_gpu(network net, float *input)
 {
-
     int size = get_network_input_size(net) * net.batch;
     network_state state;
     state.input = cuda_make_array(input, size);

--
Gitblit v1.10.0