From 9a01e6ccb7a74ff77e99060cf18acd6cfdb74b8e Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 11 Nov 2016 16:48:40 +0000
Subject: [PATCH] :fire: crush. crush. admit. :fire:

---
 src/detector.c     |  165 ++++++++++++++---
 src/classifier.c   |  203 ++++++++++++----------
 src/region_layer.c |   75 +++++--
 src/darknet.c      |   55 ++++-
 4 files changed, 328 insertions(+), 170 deletions(-)

diff --git a/src/classifier.c b/src/classifier.c
index 2ce6207..586530a 100644
--- a/src/classifier.c
+++ b/src/classifier.c
@@ -25,9 +25,8 @@
     return v;
 }
 
-void train_classifier_multi(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
+void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
 {
-#ifdef GPU
     int i;
 
     float avg_loss = -1;
@@ -40,7 +39,9 @@
     int seed = rand();
     for(i = 0; i < ngpus; ++i){
         srand(seed);
+#ifdef GPU
         cuda_set_device(gpus[i]);
+#endif
         nets[i] = parse_network_cfg(cfgfile);
         if(weightfile){
             load_weights(&nets[i], weightfile);
@@ -107,7 +108,16 @@
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
 
-        float loss = train_networks(nets, ngpus, train, 4);
+        float loss = 0;
+#ifdef GPU
+        if(ngpus == 1){
+            loss = train_network(net, train);
+        } else {
+            loss = train_networks(nets, ngpus, train, 4);
+        }
+#else
+        loss = train_network(net, train);
+#endif
         if(avg_loss == -1) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
@@ -133,117 +143,118 @@
     free_ptrs((void**)paths, plist->size);
     free_list(plist);
     free(base);
-#endif
 }
 
 
-void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
-{
-    srand(time(0));
-    float avg_loss = -1;
-    char *base = basecfg(cfgfile);
-    printf("%s\n", base);
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    if(clear) *net.seen = 0;
+/*
+   void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
+   {
+   srand(time(0));
+   float avg_loss = -1;
+   char *base = basecfg(cfgfile);
+   printf("%s\n", base);
+   network net = parse_network_cfg(cfgfile);
+   if(weightfile){
+   load_weights(&net, weightfile);
+   }
+   if(clear) *net.seen = 0;
 
-    int imgs = net.batch * net.subdivisions;
+   int imgs = net.batch * net.subdivisions;
 
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    list *options = read_data_cfg(datacfg);
+   printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+   list *options = read_data_cfg(datacfg);
 
-    char *backup_directory = option_find_str(options, "backup", "/backup/");
-    char *label_list = option_find_str(options, "labels", "data/labels.list");
-    char *train_list = option_find_str(options, "train", "data/train.list");
-    int classes = option_find_int(options, "classes", 2);
+   char *backup_directory = option_find_str(options, "backup", "/backup/");
+   char *label_list = option_find_str(options, "labels", "data/labels.list");
+   char *train_list = option_find_str(options, "train", "data/train.list");
+   int classes = option_find_int(options, "classes", 2);
 
-    char **labels = get_labels(label_list);
-    list *plist = get_paths(train_list);
-    char **paths = (char **)list_to_array(plist);
-    printf("%d\n", plist->size);
-    int N = plist->size;
-    clock_t time;
+   char **labels = get_labels(label_list);
+   list *plist = get_paths(train_list);
+   char **paths = (char **)list_to_array(plist);
+   printf("%d\n", plist->size);
+   int N = plist->size;
+   clock_t time;
 
-    load_args args = {0};
-    args.w = net.w;
-    args.h = net.h;
-    args.threads = 8;
+   load_args args = {0};
+   args.w = net.w;
+   args.h = net.h;
+   args.threads = 8;
 
-    args.min = net.min_crop;
-    args.max = net.max_crop;
-    args.angle = net.angle;
-    args.aspect = net.aspect;
-    args.exposure = net.exposure;
-    args.saturation = net.saturation;
-    args.hue = net.hue;
-    args.size = net.w;
-    args.hierarchy = net.hierarchy;
+   args.min = net.min_crop;
+   args.max = net.max_crop;
+   args.angle = net.angle;
+   args.aspect = net.aspect;
+   args.exposure = net.exposure;
+   args.saturation = net.saturation;
+   args.hue = net.hue;
+   args.size = net.w;
+   args.hierarchy = net.hierarchy;
 
-    args.paths = paths;
-    args.classes = classes;
-    args.n = imgs;
-    args.m = N;
-    args.labels = labels;
-    args.type = CLASSIFICATION_DATA;
+   args.paths = paths;
+   args.classes = classes;
+   args.n = imgs;
+   args.m = N;
+   args.labels = labels;
+   args.type = CLASSIFICATION_DATA;
 
-    data train;
-    data buffer;
-    pthread_t load_thread;
-    args.d = &buffer;
-    load_thread = load_data(args);
+   data train;
+   data buffer;
+   pthread_t load_thread;
+   args.d = &buffer;
+   load_thread = load_data(args);
 
-    int epoch = (*net.seen)/N;
-    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
-        time=clock();
+   int epoch = (*net.seen)/N;
+   while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
+   time=clock();
 
-        pthread_join(load_thread, 0);
-        train = buffer;
-        load_thread = load_data(args);
+   pthread_join(load_thread, 0);
+   train = buffer;
+   load_thread = load_data(args);
 
-        printf("Loaded: %lf seconds\n", sec(clock()-time));
-        time=clock();
+   printf("Loaded: %lf seconds\n", sec(clock()-time));
+   time=clock();
 
 #ifdef OPENCV
-        if(0){
-            int u;
-            for(u = 0; u < imgs; ++u){
-                image im = float_to_image(net.w, net.h, 3, train.X.vals[u]);
-                show_image(im, "loaded");
-                cvWaitKey(0);
-            }
-        }
+if(0){
+int u;
+for(u = 0; u < imgs; ++u){
+    image im = float_to_image(net.w, net.h, 3, train.X.vals[u]);
+    show_image(im, "loaded");
+    cvWaitKey(0);
+}
+}
 #endif
 
-        float loss = train_network(net, train);
-        free_data(train);
+float loss = train_network(net, train);
+free_data(train);
 
-        if(avg_loss == -1) avg_loss = loss;
-        avg_loss = avg_loss*.9 + loss*.1;
-        printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
-        if(*net.seen/N > epoch){
-            epoch = *net.seen/N;
-            char buff[256];
-            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
-            save_weights(net, buff);
-        }
-        if(get_current_batch(net)%100 == 0){
-            char buff[256];
-            sprintf(buff, "%s/%s.backup",backup_directory,base);
-            save_weights(net, buff);
-        }
-    }
+if(avg_loss == -1) avg_loss = loss;
+avg_loss = avg_loss*.9 + loss*.1;
+printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
+if(*net.seen/N > epoch){
+    epoch = *net.seen/N;
     char buff[256];
-    sprintf(buff, "%s/%s.weights", backup_directory, base);
+    sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
     save_weights(net, buff);
-
-    free_network(net);
-    free_ptrs((void**)labels, classes);
-    free_ptrs((void**)paths, plist->size);
-    free_list(plist);
-    free(base);
 }
+if(get_current_batch(net)%100 == 0){
+    char buff[256];
+    sprintf(buff, "%s/%s.backup",backup_directory,base);
+    save_weights(net, buff);
+}
+}
+char buff[256];
+sprintf(buff, "%s/%s.weights", backup_directory, base);
+save_weights(net, buff);
+
+free_network(net);
+free_ptrs((void**)labels, classes);
+free_ptrs((void**)paths, plist->size);
+free_list(plist);
+free(base);
+}
+*/
 
 void validate_classifier_crop(char *datacfg, char *filename, char *weightfile)
 {
@@ -1108,6 +1119,7 @@
 
     char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
     int *gpus = 0;
+    int gpu = 0;
     int ngpus = 0;
     if(gpu_list){
         printf("%s\n", gpu_list);
@@ -1122,6 +1134,10 @@
             gpus[i] = atoi(gpu_list);
             gpu_list = strchr(gpu_list, ',')+1;
         }
+    } else {
+        gpu = gpu_index;
+        gpus = &gpu;
+        ngpus = 1;
     }
 
     int cam_index = find_int_arg(argc, argv, "-c", 0);
@@ -1135,8 +1151,7 @@
     int layer = layer_s ? atoi(layer_s) : -1;
     if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top);
     else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s));
-    else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear);
-    else if(0==strcmp(argv[2], "trainm")) train_classifier_multi(data, cfg, weights, gpus, ngpus, clear);
+    else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear);
     else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);
     else if(0==strcmp(argv[2], "gun")) gun_classifier(data, cfg, weights, cam_index, filename);
     else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename);
diff --git a/src/darknet.c b/src/darknet.c
index 3bc0c6a..989bf6f 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -30,20 +30,6 @@
 extern void run_art(int argc, char **argv);
 extern void run_super(int argc, char **argv);
 
-void change_rate(char *filename, float scale, float add)
-{
-    // Ready for some weird shit??
-    FILE *fp = fopen(filename, "r+b");
-    if(!fp) file_error(filename);
-    float rate = 0;
-    fread(&rate, sizeof(float), 1, fp);
-    printf("Scaling learning rate from %f to %f\n", rate, rate*scale+add);
-    rate = rate*scale + add;
-    fseek(fp, 0, SEEK_SET);
-    fwrite(&rate, sizeof(float), 1, fp);
-    fclose(fp);
-}
-
 void average(int argc, char *argv[])
 {
     char *cfgfile = argv[2];
@@ -67,6 +53,11 @@
                 int num = l.n*l.c*l.size*l.size;
                 axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
                 axpy_cpu(num, 1, l.weights, 1, out.weights, 1);
+                if(l.batch_normalize){
+                    axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1);
+                    axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1);
+                    axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1);
+                }
             }
             if(l.type == CONNECTED){
                 axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
@@ -81,6 +72,11 @@
             int num = l.n*l.c*l.size*l.size;
             scal_cpu(l.n, 1./n, l.biases, 1);
             scal_cpu(num, 1./n, l.weights, 1);
+                if(l.batch_normalize){
+                    scal_cpu(l.n, 1./n, l.scales, 1);
+                    scal_cpu(l.n, 1./n, l.rolling_mean, 1);
+                    scal_cpu(l.n, 1./n, l.rolling_variance, 1);
+                }
         }
         if(l.type == CONNECTED){
             scal_cpu(l.outputs, 1./n, l.biases, 1);
@@ -125,6 +121,31 @@
     printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
 }
 
+void oneoff(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    int oldn = net.layers[net.n - 2].n;
+    int c = net.layers[net.n - 2].c;
+    net.layers[net.n - 2].n = 7879;
+    net.layers[net.n - 2].biases += 5;
+    net.layers[net.n - 2].weights += 5*c;
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    net.layers[net.n - 2].biases -= 5;
+    net.layers[net.n - 2].weights -= 5*c;
+    net.layers[net.n - 2].n = oldn;
+    printf("%d\n", oldn);
+    layer l = net.layers[net.n - 2];
+    copy_cpu(l.n/3, l.biases, 1, l.biases +   l.n/3, 1);
+    copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
+    copy_cpu(l.n/3*l.c, l.weights, 1, l.weights +   l.n/3*l.c, 1);
+    copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
+    *net.seen = 0;
+    save_weights(net, outfile);
+}
+
 void partial(char *cfgfile, char *weightfile, char *outfile, int max)
 {
     gpu_index = -1;
@@ -387,8 +408,6 @@
         run_captcha(argc, argv);
     } else if (0 == strcmp(argv[1], "nightmare")){
         run_nightmare(argc, argv);
-    } else if (0 == strcmp(argv[1], "change")){
-        change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0);
     } else if (0 == strcmp(argv[1], "rgbgr")){
         rgbgr_net(argv[2], argv[3], argv[4]);
     } else if (0 == strcmp(argv[1], "reset")){
@@ -404,7 +423,9 @@
     } else if (0 == strcmp(argv[1], "ops")){
         operations(argv[2]);
     } else if (0 == strcmp(argv[1], "speed")){
-        speed(argv[2], (argc > 3) ? atoi(argv[3]) : 0);
+        speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0);
+    } else if (0 == strcmp(argv[1], "oneoff")){
+        oneoff(argv[2], argv[3], argv[4]);
     } else if (0 == strcmp(argv[1], "partial")){
         partial(argv[2], argv[3], argv[4], atoi(argv[5]));
     } else if (0 == strcmp(argv[1], "average")){
diff --git a/src/detector.c b/src/detector.c
index e020be5..f18ae51 100644
--- a/src/detector.c
+++ b/src/detector.c
@@ -10,8 +10,9 @@
 #ifdef OPENCV
 #include "opencv2/highgui/highgui_c.h"
 #endif
+static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
 
-void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear)
+void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
 {
     list *options = read_data_cfg(datacfg);
     char *train_images = option_find_str(options, "train", "data/train.list");
@@ -21,14 +22,28 @@
     char *base = basecfg(cfgfile);
     printf("%s\n", base);
     float avg_loss = -1;
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
+    network *nets = calloc(ngpus, sizeof(network));
+
+    srand(time(0));
+    int seed = rand();
+    int i;
+    for(i = 0; i < ngpus; ++i){
+        srand(seed);
+#ifdef GPU
+        cuda_set_device(gpus[i]);
+#endif
+        nets[i] = parse_network_cfg(cfgfile);
+        if(weightfile){
+            load_weights(&nets[i], weightfile);
+        }
+        if(clear) *nets[i].seen = 0;
+        nets[i].learning_rate *= ngpus;
     }
-    if(clear) *net.seen = 0;
+    srand(time(0));
+    network net = nets[0];
+
+    int imgs = net.batch * net.subdivisions * ngpus;
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = net.batch*net.subdivisions;
-    int i = *net.seen/imgs;
     data train, buffer;
 
     layer l = net.layers[net.n - 1];
@@ -62,37 +77,46 @@
     clock_t time;
     //while(i*imgs < N*120){
     while(get_current_batch(net) < net.max_batches){
-        i += 1;
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
         load_thread = load_data(args);
 
-/*
-        int k;
-        for(k = 0; k < l.max_boxes; ++k){
-            box b = float_to_box(train.y.vals[10] + 1 + k*5);
-            if(!b.x) break;
-            printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
-        }
-        image im = float_to_image(448, 448, 3, train.X.vals[10]);
-        int k;
-        for(k = 0; k < l.max_boxes; ++k){
-            box b = float_to_box(train.y.vals[10] + 1 + k*5);
-            printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
-            draw_bbox(im, b, 8, 1,0,0);
-        }
-        save_image(im, "truth11");
-*/
+        /*
+           int k;
+           for(k = 0; k < l.max_boxes; ++k){
+           box b = float_to_box(train.y.vals[10] + 1 + k*5);
+           if(!b.x) break;
+           printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
+           }
+           image im = float_to_image(448, 448, 3, train.X.vals[10]);
+           int k;
+           for(k = 0; k < l.max_boxes; ++k){
+           box b = float_to_box(train.y.vals[10] + 1 + k*5);
+           printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
+           draw_bbox(im, b, 8, 1,0,0);
+           }
+           save_image(im, "truth11");
+         */
 
         printf("Loaded: %lf seconds\n", sec(clock()-time));
 
         time=clock();
-        float loss = train_network(net, train);
+        float loss = 0;
+#ifdef GPU
+        if(ngpus == 1){
+            loss = train_network(net, train);
+        } else {
+            loss = train_networks(nets, ngpus, train, 4);
+        }
+#else
+        loss = train_network(net, train);
+#endif
         if (avg_loss < 0) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
 
-        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
+        i = get_current_batch(net);
+        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
         if(i%1000==0 || (i < 1000 && i%100 == 0)){
             char buff[256];
             sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
@@ -105,6 +129,39 @@
     save_weights(net, buff);
 }
 
+
+static int get_coco_image_id(char *filename)
+{
+    char *p = strrchr(filename, '_');
+    return atoi(p+1);
+}
+
+static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
+{
+    int i, j;
+    int image_id = get_coco_image_id(image_path);
+    for(i = 0; i < num_boxes; ++i){
+        float xmin = boxes[i].x - boxes[i].w/2.;
+        float xmax = boxes[i].x + boxes[i].w/2.;
+        float ymin = boxes[i].y - boxes[i].h/2.;
+        float ymax = boxes[i].y + boxes[i].h/2.;
+
+        if (xmin < 0) xmin = 0;
+        if (ymin < 0) ymin = 0;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
+
+        float bx = xmin;
+        float by = ymin;
+        float bw = xmax - xmin;
+        float bh = ymax - ymin;
+
+        for(j = 0; j < classes; ++j){
+            if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
+        }
+    }
+}
+
 void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
 {
     int i, j;
@@ -131,8 +188,19 @@
     list *options = read_data_cfg(datacfg);
     char *valid_images = option_find_str(options, "valid", "data/train.list");
     char *name_list = option_find_str(options, "names", "data/names.list");
+    char *prefix = option_find_str(options, "results", "results");
     char **names = get_labels(name_list);
 
+
+    char buff[1024];
+    int coco = option_find_int_quiet(options, "coco", 0);
+    FILE *coco_fp = 0;
+    if(coco){
+        snprintf(buff, 1024, "%s/coco_results.json", prefix);
+        coco_fp = fopen(buff, "w");
+        fprintf(coco_fp, "[\n");
+    }
+
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
@@ -141,7 +209,7 @@
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     srand(time(0));
 
-    char *base = "results/comp4_det_test_";
+    char *base = "comp4_det_test_";
     list *plist = get_paths(valid_images);
     char **paths = (char **)list_to_array(plist);
 
@@ -151,8 +219,7 @@
     int j;
     FILE **fps = calloc(classes, sizeof(FILE *));
     for(j = 0; j < classes; ++j){
-        char buff[1024];
-        snprintf(buff, 1024, "%s%s.txt", base, names[j]);
+        snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]);
         fps[j] = fopen(buff, "w");
     }
     box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
@@ -207,7 +274,11 @@
             int h = val[t].h;
             get_region_boxes(l, w, h, thresh, probs, boxes, 0);
             if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
-            print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
+            if(coco_fp){
+                print_cocos(coco_fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
+            }else{
+                print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
+            }
             free(id);
             free_image(val[t]);
             free_image(val_resized[t]);
@@ -216,6 +287,11 @@
     for(j = 0; j < classes; ++j){
         fclose(fps[j]);
     }
+    if(coco_fp){
+        fseek(coco_fp, -2, SEEK_CUR); 
+        fprintf(coco_fp, "\n]\n");
+        fclose(coco_fp);
+    }
     fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
 }
 
@@ -300,8 +376,8 @@
 void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh)
 {
     list *options = read_data_cfg(datacfg);
-        char *name_list = option_find_str(options, "names", "data/names.list");
-        char **names = get_labels(name_list);
+    char *name_list = option_find_str(options, "names", "data/names.list");
+    char **names = get_labels(name_list);
 
     image **alphabet = load_alphabet();
     network net = parse_network_cfg(cfgfile);
@@ -361,6 +437,29 @@
         fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
         return;
     }
+    char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
+    int *gpus = 0;
+    int gpu = 0;
+    int ngpus = 0;
+    if(gpu_list){
+        printf("%s\n", gpu_list);
+        int len = strlen(gpu_list);
+        ngpus = 1;
+        int i;
+        for(i = 0; i < len; ++i){
+            if (gpu_list[i] == ',') ++ngpus;
+        }
+        gpus = calloc(ngpus, sizeof(int));
+        for(i = 0; i < ngpus; ++i){
+            gpus[i] = atoi(gpu_list);
+            gpu_list = strchr(gpu_list, ',')+1;
+        }
+    } else {
+        gpu = gpu_index;
+        gpus = &gpu;
+        ngpus = 1;
+    }
+
     int clear = find_arg(argc, argv, "-clear");
 
     char *datacfg = argv[3];
@@ -368,7 +467,7 @@
     char *weights = (argc > 5) ? argv[5] : 0;
     char *filename = (argc > 6) ? argv[6]: 0;
     if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh);
-    else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, clear);
+    else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
     else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
     else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights);
     else if(0==strcmp(argv[2], "demo")) {
diff --git a/src/region_layer.c b/src/region_layer.c
index 269be1f..ac30e88 100644
--- a/src/region_layer.c
+++ b/src/region_layer.c
@@ -48,19 +48,18 @@
     return l;
 }
 
-#define LOG 1
-
+#define DOABS 1
 box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h)
 {
     box b;
-    b.x = (i + .5)/w + x[index + 0] * biases[2*n];
-    b.y = (j + .5)/h + x[index + 1] * biases[2*n + 1];
-    if(LOG){
-        b.x = (i + logistic_activate(x[index + 0])) / w;
-        b.y = (j + logistic_activate(x[index + 1])) / h;
-    }
+    b.x = (i + logistic_activate(x[index + 0])) / w;
+    b.y = (j + logistic_activate(x[index + 1])) / h;
     b.w = exp(x[index + 2]) * biases[2*n];
     b.h = exp(x[index + 3]) * biases[2*n+1];
+    if(DOABS){
+        b.w = exp(x[index + 2]) * biases[2*n]   / w;
+        b.h = exp(x[index + 3]) * biases[2*n+1] / h;
+    }
     return b;
 }
 
@@ -69,21 +68,17 @@
     box pred = get_region_box(x, biases, n, index, i, j, w, h);
     float iou = box_iou(pred, truth);
 
-    float tx = (truth.x - (i + .5)/w) / biases[2*n];
-    float ty = (truth.y - (j + .5)/h) / biases[2*n + 1];
-    if(LOG){
-        tx = (truth.x*w - i);
-        ty = (truth.y*h - j);
-    }
+    float tx = (truth.x*w - i);
+    float ty = (truth.y*h - j);
     float tw = log(truth.w / biases[2*n]);
     float th = log(truth.h / biases[2*n + 1]);
-
-    delta[index + 0] = scale * (tx - x[index + 0]);
-    delta[index + 1] = scale * (ty - x[index + 1]);
-    if(LOG){
-        delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
-        delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
+    if(DOABS){
+        tw = log(truth.w*w / biases[2*n]);
+        th = log(truth.h*h / biases[2*n + 1]);
     }
+
+    delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
+    delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
     delta[index + 2] = scale * (tw - x[index + 2]);
     delta[index + 3] = scale * (th - x[index + 3]);
     return iou;
@@ -135,9 +130,33 @@
         for(i = 0; i < l.h*l.w*l.n; ++i){
             int index = size*i + b*l.outputs;
             l.output[index + 4] = logistic_activate(l.output[index + 4]);
-            if(l.softmax_tree){
+        }
+    }
+
+
+    if (l.softmax_tree){
+#ifdef GPU
+        cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
+        int i;
+        int count = 5;
+        for (i = 0; i < l.softmax_tree->groups; ++i) {
+            int group_size = l.softmax_tree->group_size[i];
+            softmax_gpu(l.output_gpu+count, group_size, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + count);
+            count += group_size;
+        }
+        cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
+#else
+        for (b = 0; b < l.batch; ++b){
+            for(i = 0; i < l.h*l.w*l.n; ++i){
+                int index = size*i + b*l.outputs;
                 softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5);
-            } else if(l.softmax){
+            }
+        }
+#endif
+    } else if (l.softmax){
+        for (b = 0; b < l.batch; ++b){
+            for(i = 0; i < l.h*l.w*l.n; ++i){
+                int index = size*i + b*l.outputs;
                 softmax(l.output + index + 5, l.classes, 1, l.output + index + 5);
             }
         }
@@ -188,11 +207,11 @@
                         truth.y = (j + .5)/l.h;
                         truth.w = l.biases[2*n];
                         truth.h = l.biases[2*n+1];
+                        if(DOABS){
+                            truth.w = l.biases[2*n]/l.w;
+                            truth.h = l.biases[2*n+1]/l.h;
+                        }
                         delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01);
-                        //l.delta[index + 0] = .1 * (0 - l.output[index + 0]);
-                        //l.delta[index + 1] = .1 * (0 - l.output[index + 1]);
-                        //l.delta[index + 2] = .1 * (0 - l.output[index + 2]);
-                        //l.delta[index + 3] = .1 * (0 - l.output[index + 3]);
                     }
                 }
             }
@@ -217,6 +236,10 @@
                 if(l.bias_match){
                     pred.w = l.biases[2*n];
                     pred.h = l.biases[2*n+1];
+                    if(DOABS){
+                        pred.w = l.biases[2*n]/l.w;
+                        pred.h = l.biases[2*n+1]/l.h;
+                    }
                 }
                 //printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
                 pred.x = 0;

--
Gitblit v1.10.0