From 9ac78d8b84f6a059d2cefe22a10aa60de5b3feaf Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Thu, 04 Jan 2018 21:58:52 +0000
Subject: [PATCH] Fine tuning, use stopbackward=1 in the cfg-file in that layer where Backward should be stopped.

---
 src/yolo_v2_class.cpp |  191 +++++++++++++++++++++++++++++++++++++++++------
 1 files changed, 165 insertions(+), 26 deletions(-)

diff --git a/src/yolo_v2_class.cpp b/src/yolo_v2_class.cpp
index 69cd5fc..1777aa2 100644
--- a/src/yolo_v2_class.cpp
+++ b/src/yolo_v2_class.cpp
@@ -1,6 +1,5 @@
 #include "yolo_v2_class.hpp"
 
-
 #include "network.h"
 
 extern "C" {
@@ -12,43 +11,42 @@
 #include "box.h"
 #include "image.h"
 #include "demo.h"
-
 #include "option_list.h"
-
+#include "stb_image.h"
 }
 //#include <sys/time.h>
 
 #include <vector>
 #include <iostream>
-
+#include <algorithm>
 
 #define FRAMES 3
-#define ROI_PER_DETECTOR 100
-
 
 struct detector_gpu_t{
 	float **probs;
 	box *boxes;
 	network net;
-	//image det;
-	//image det_s;
 	image images[FRAMES];
 	float *avg;
 	float *predictions[FRAMES];
+	int demo_index;
+	unsigned int *track_id;
 };
 
 
-
 YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id)
 {
 	int old_gpu_index;
+#ifdef GPU
 	cudaGetDevice(&old_gpu_index);
+#endif
 
 	detector_gpu_ptr = std::make_shared<detector_gpu_t>();
-
 	detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
 
+#ifdef GPU
 	cudaSetDevice(gpu_id);
+#endif
 	network &net = detector_gpu.net;
 	net.gpu_index = gpu_id;
 	//gpu_index = i;
@@ -56,7 +54,7 @@
 	char *cfgfile = const_cast<char *>(cfg_filename.data());
 	char *weightfile = const_cast<char *>(weight_filename.data());
 
-	net = parse_network_cfg(cfgfile);
+	net = parse_network_cfg_custom(cfgfile, 1);
 	if (weightfile) {
 		load_weights(&net, weightfile);
 	}
@@ -74,26 +72,86 @@
 	detector_gpu.probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *));
 	for (j = 0; j < l.w*l.h*l.n; ++j) detector_gpu.probs[j] = (float *)calloc(l.classes, sizeof(float));
 
+	detector_gpu.track_id = (unsigned int *)calloc(l.classes, sizeof(unsigned int));
+	for (j = 0; j < l.classes; ++j) detector_gpu.track_id[j] = 1;
+
+#ifdef GPU
 	cudaSetDevice(old_gpu_index);
+#endif
 }
 
+
 YOLODLL_API Detector::~Detector() 
 {
 	detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
 	layer l = detector_gpu.net.layers[detector_gpu.net.n - 1];
 
-	free(detector_gpu.boxes);
+	free(detector_gpu.track_id);
+
 	free(detector_gpu.avg);
-	free(detector_gpu.predictions);
+	for (int j = 0; j < FRAMES; ++j) free(detector_gpu.predictions[j]);
+	for (int j = 0; j < FRAMES; ++j) if(detector_gpu.images[j].data) free(detector_gpu.images[j].data);
+
 	for (int j = 0; j < l.w*l.h*l.n; ++j) free(detector_gpu.probs[j]);
+	free(detector_gpu.boxes);
 	free(detector_gpu.probs);
+
+	int old_gpu_index;
+#ifdef GPU
+	cudaGetDevice(&old_gpu_index);
+	cudaSetDevice(detector_gpu.net.gpu_index);
+#endif
+
+	free_network(detector_gpu.net);
+
+#ifdef GPU
+	cudaSetDevice(old_gpu_index);
+#endif
+}
+
+YOLODLL_API int Detector::get_net_width() const {
+	detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	return detector_gpu.net.w;
+}
+YOLODLL_API int Detector::get_net_height() const {
+	detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	return detector_gpu.net.h;
 }
 
 
-YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh)
+YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh, bool use_mean)
+{
+	std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { if (img->data) free(img->data); delete img; });
+	*image_ptr = load_image(image_filename);
+	return detect(*image_ptr, thresh, use_mean);
+}
+
+static image load_image_stb(char *filename, int channels)
+{
+	int w, h, c;
+	unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
+	if (!data) 
+		throw std::runtime_error("file not found");
+	if (channels) c = channels;
+	int i, j, k;
+	image im = make_image(w, h, c);
+	for (k = 0; k < c; ++k) {
+		for (j = 0; j < h; ++j) {
+			for (i = 0; i < w; ++i) {
+				int dst_index = i + w*j + w*h*k;
+				int src_index = k + c*i + c*w*j;
+				im.data[dst_index] = (float)data[src_index] / 255.;
+			}
+		}
+	}
+	free(data);
+	return im;
+}
+
+YOLODLL_API image_t Detector::load_image(std::string image_filename)
 {
 	char *input = const_cast<char *>(image_filename.data());
-	image im = load_image_color(input, 0, 0);
+	image im = load_image_stb(input, 3);
 
 	image_t img;
 	img.c = im.c;
@@ -101,21 +159,30 @@
 	img.h = im.h;
 	img.w = im.w;
 
-	return detect(img, thresh);
+	return img;
 }
 
 
-YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh)
+YOLODLL_API void Detector::free_image(image_t m)
+{
+	if (m.data) {
+		free(m.data);
+	}
+}
+
+YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh, bool use_mean)
 {
 
 	detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
 	network &net = detector_gpu.net;
 	int old_gpu_index;
+#ifdef GPU
 	cudaGetDevice(&old_gpu_index);
 	cudaSetDevice(net.gpu_index);
+#endif
 	//std::cout << "net.gpu_index = " << net.gpu_index << std::endl;
 
-	float nms = .4;
+	//float nms = .4;
 
 	image im;
 	im.c = img.c;
@@ -123,16 +190,27 @@
 	im.h = img.h;
 	im.w = img.w;
 
-	image sized = resize_image(im, net.w, net.h);
-	layer l = net.layers[net.n - 1];
+	image sized;
+	
+	if (net.w == im.w && net.h == im.h) {
+		sized = make_image(im.w, im.h, im.c);
+		memcpy(sized.data, im.data, im.w*im.h*im.c * sizeof(float));
+	}
+	else
+		sized = resize_image(im, net.w, net.h);
 
-	//box *boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box));
-	//float **probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *));
-	// (int j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *));
+	layer l = net.layers[net.n - 1];
 
 	float *X = sized.data;
 
-	network_predict(net, X);
+	float *prediction = network_predict(net, X);
+
+	if (use_mean) {
+		memcpy(detector_gpu.predictions[detector_gpu.demo_index], prediction, l.outputs * sizeof(float));
+		mean_arrays(detector_gpu.predictions, FRAMES, l.outputs, detector_gpu.avg);
+		l.output = detector_gpu.avg;
+		detector_gpu.demo_index = (detector_gpu.demo_index + 1) % FRAMES;
+	}
 
 	get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0);
 	if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms);
@@ -148,18 +226,79 @@
 		if (prob > thresh) 
 		{
 			bbox_t bbox;
-			bbox.x = (b.x - b.w / 2.)*im.w;
-			bbox.y = (b.y - b.h / 2.)*im.h;
+			bbox.x = std::max((double)0, (b.x - b.w / 2.)*im.w);
+			bbox.y = std::max((double)0, (b.y - b.h / 2.)*im.h);
 			bbox.w = b.w*im.w;
 			bbox.h = b.h*im.h;
 			bbox.obj_id = obj_id;
 			bbox.prob = prob;
+			bbox.track_id = 0;
 
 			bbox_vec.push_back(bbox);
 		}
 	}
 
+	if(sized.data)
+		free(sized.data);
+
+#ifdef GPU
 	cudaSetDevice(old_gpu_index);
+#endif
 
 	return bbox_vec;
+}
+
+YOLODLL_API std::vector<bbox_t> Detector::tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story)
+{
+	detector_gpu_t &det_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+
+	bool prev_track_id_present = false;
+	for (auto &i : prev_bbox_vec_deque)
+		if (i.size() > 0) prev_track_id_present = true;
+
+	if (!prev_track_id_present) {
+		for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
+			cur_bbox_vec[i].track_id = det_gpu.track_id[cur_bbox_vec[i].obj_id]++;
+		prev_bbox_vec_deque.push_front(cur_bbox_vec);
+		if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
+		return cur_bbox_vec;
+	}
+
+	std::vector<unsigned int> dist_vec(cur_bbox_vec.size(), std::numeric_limits<unsigned int>::max());
+
+	for (auto &prev_bbox_vec : prev_bbox_vec_deque) {
+		for (auto &i : prev_bbox_vec) {
+			int cur_index = -1;
+			for (size_t m = 0; m < cur_bbox_vec.size(); ++m) {
+				bbox_t const& k = cur_bbox_vec[m];
+				if (i.obj_id == k.obj_id) {
+					float center_x_diff = (float)(i.x + i.w/2) - (float)(k.x + k.w/2);
+					float center_y_diff = (float)(i.y + i.h/2) - (float)(k.y + k.h/2);
+					unsigned int cur_dist = sqrt(center_x_diff*center_x_diff + center_y_diff*center_y_diff);
+					if (cur_dist < 100 && (k.track_id == 0 || dist_vec[m] > cur_dist)) {
+						dist_vec[m] = cur_dist;
+						cur_index = m;
+					}
+				}
+			}
+
+			bool track_id_absent = !std::any_of(cur_bbox_vec.begin(), cur_bbox_vec.end(), 
+				[&i](bbox_t const& b) { return b.track_id == i.track_id && b.obj_id == i.obj_id; });
+
+			if (cur_index >= 0 && track_id_absent){
+				cur_bbox_vec[cur_index].track_id = i.track_id;
+				cur_bbox_vec[cur_index].w = (cur_bbox_vec[cur_index].w + i.w) / 2;
+				cur_bbox_vec[cur_index].h = (cur_bbox_vec[cur_index].h + i.h) / 2;
+			}
+		}
+	}
+
+	for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
+		if (cur_bbox_vec[i].track_id == 0)
+			cur_bbox_vec[i].track_id = det_gpu.track_id[cur_bbox_vec[i].obj_id]++;
+
+	prev_bbox_vec_deque.push_front(cur_bbox_vec);
+	if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
+
+	return cur_bbox_vec;
 }
\ No newline at end of file

--
Gitblit v1.10.0