From 9b3c7136f34d4cad593467cd785f44ebb05bf878 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 16 Oct 2014 22:17:23 +0000
Subject: [PATCH] Fixing up maxpool layer
---
src/network.c | 72 +++++++++++++++++++++++++++++-------
1 files changed, 58 insertions(+), 14 deletions(-)
diff --git a/src/network.c b/src/network.c
index e4e4c8e..f9b4667 100644
--- a/src/network.c
+++ b/src/network.c
@@ -24,7 +24,8 @@
net.outputs = 0;
net.output = 0;
#ifdef GPU
- net.input_cl = 0;
+ net.input_cl = calloc(1, sizeof(cl_mem));
+ net.truth_cl = calloc(1, sizeof(cl_mem));
#endif
return net;
}
@@ -43,12 +44,12 @@
cost_layer layer = *(cost_layer *)net.layers[i];
forward_cost_layer_gpu(layer, input, truth);
}
- /*
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
- forward_connected_layer(layer, input, train);
- input = layer.output;
+ forward_connected_layer_gpu(layer, input);
+ input = layer.output_cl;
}
+ /*
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
forward_softmax_layer(layer, input);
@@ -94,6 +95,10 @@
cost_layer layer = *(cost_layer *)net.layers[i];
backward_cost_layer_gpu(layer, prev_input, prev_delta);
}
+ else if(net.types[i] == CONNECTED){
+ connected_layer layer = *(connected_layer *)net.layers[i];
+ backward_connected_layer_gpu(layer, prev_input, prev_delta);
+ }
}
}
@@ -105,18 +110,9 @@
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
update_convolutional_layer_gpu(layer);
}
- else if(net.types[i] == MAXPOOL){
- //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- }
- else if(net.types[i] == SOFTMAX){
- //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- }
- else if(net.types[i] == NORMALIZATION){
- //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- }
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
- update_connected_layer(layer);
+ update_connected_layer_gpu(layer);
}
}
}
@@ -127,6 +123,10 @@
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output_cl;
}
+ else if(net.types[i] == CONNECTED){
+ connected_layer layer = *(connected_layer *)net.layers[i];
+ return layer.output_cl;
+ }
return 0;
}
@@ -136,6 +136,10 @@
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.delta_cl;
}
+ else if(net.types[i] == CONNECTED){
+ connected_layer layer = *(connected_layer *)net.layers[i];
+ return layer.delta_cl;
+ }
return 0;
}
@@ -347,6 +351,46 @@
}
}
+#ifdef GPU
+float train_network_datum_gpu(network net, float *x, float *y)
+{
+ int x_size = get_network_input_size(net)*net.batch;
+ int y_size = get_network_output_size(net)*net.batch;
+ if(!*net.input_cl){
+ *net.input_cl = cl_make_array(x, x_size);
+ *net.truth_cl = cl_make_array(y, y_size);
+ }else{
+ cl_write_array(*net.input_cl, x, x_size);
+ cl_write_array(*net.truth_cl, y, y_size);
+ }
+ forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
+ //int class = get_predicted_class_network(net);
+ backward_network_gpu(net, *net.input_cl);
+ float error = get_network_cost(net);
+ update_network_gpu(net);
+ //return (y[class]?1:0);
+ return error;
+}
+float train_network_sgd_gpu(network net, data d, int n)
+{
+ int batch = net.batch;
+ float *X = calloc(batch*d.X.cols, sizeof(float));
+ float *y = calloc(batch*d.y.cols, sizeof(float));
+
+ int i;
+ float sum = 0;
+ for(i = 0; i < n; ++i){
+ get_batch(d, batch, X, y);
+ float err = train_network_datum_gpu(net, X, y);
+ sum += err;
+ }
+ free(X);
+ free(y);
+ return (float)sum/(n*batch);
+}
+#endif
+
+
float train_network_datum(network net, float *x, float *y)
{
forward_network(net, x, y, 1);
--
Gitblit v1.10.0