From 9b3c7136f34d4cad593467cd785f44ebb05bf878 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 16 Oct 2014 22:17:23 +0000
Subject: [PATCH] Fixing up maxpool layer

---
 src/network.c |  189 ++++++++++++++++++++++++++++++++++++++++++----
 1 files changed, 171 insertions(+), 18 deletions(-)

diff --git a/src/network.c b/src/network.c
index 3761bf9..f9b4667 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,7 +8,9 @@
 #include "connected_layer.h"
 #include "convolutional_layer.h"
 #include "maxpool_layer.h"
+#include "cost_layer.h"
 #include "normalization_layer.h"
+#include "freeweight_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
 
@@ -22,27 +24,32 @@
     net.outputs = 0;
     net.output = 0;
     #ifdef GPU
-    net.input_cl = 0;
+    net.input_cl = calloc(1, sizeof(cl_mem));
+    net.truth_cl = calloc(1, sizeof(cl_mem));
     #endif
     return net;
 }
 
 #ifdef GPU
-void forward_network_gpu(network net, cl_mem input_cl, int train)
+void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
 {
     int i;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer_gpu(layer, input_cl);
-            input_cl = layer.output_cl;
+            forward_convolutional_layer_gpu(layer, input);
+            input = layer.output_cl;
         }
-        /*
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            forward_cost_layer_gpu(layer, input, truth);
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer(layer, input, train);
-            input = layer.output;
+            forward_connected_layer_gpu(layer, input);
+            input = layer.output_cl;
         }
+        /*
         else if(net.types[i] == SOFTMAX){
             softmax_layer layer = *(softmax_layer *)net.layers[i];
             forward_softmax_layer(layer, input);
@@ -67,9 +74,78 @@
     }
 }
 
+void backward_network_gpu(network net, cl_mem input)
+{
+    int i;
+    cl_mem prev_input;
+    cl_mem prev_delta;
+    for(i = net.n-1; i >= 0; --i){
+        if(i == 0){
+            prev_input = input;
+            prev_delta = 0;
+        }else{
+            prev_input = get_network_output_cl_layer(net, i-1);
+            prev_delta = get_network_delta_cl_layer(net, i-1);
+        }
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            backward_convolutional_layer_gpu(layer, prev_delta);
+        }
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            backward_cost_layer_gpu(layer, prev_input, prev_delta);
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            backward_connected_layer_gpu(layer, prev_input, prev_delta);
+        }
+    }
+}
+
+void update_network_gpu(network net)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            update_convolutional_layer_gpu(layer);
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            update_connected_layer_gpu(layer);
+        }
+    }
+}
+
+cl_mem get_network_output_cl_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.output_cl;
+    }
+    else if(net.types[i] == CONNECTED){
+        connected_layer layer = *(connected_layer *)net.layers[i];
+        return layer.output_cl;
+    }
+    return 0;
+}
+
+cl_mem get_network_delta_cl_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.delta_cl;
+    }
+    else if(net.types[i] == CONNECTED){
+        connected_layer layer = *(connected_layer *)net.layers[i];
+        return layer.delta_cl;
+    }
+    return 0;
+}
+
 #endif
 
-void forward_network(network net, float *input, int train)
+void forward_network(network net, float *input, float *truth, int train)
 {
     int i;
     for(i = 0; i < net.n; ++i){
@@ -88,6 +164,10 @@
             forward_crop_layer(layer, input);
             input = layer.output;
         }
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            forward_cost_layer(layer, input, truth);
+        }
         else if(net.types[i] == SOFTMAX){
             softmax_layer layer = *(softmax_layer *)net.layers[i];
             forward_softmax_layer(layer, input);
@@ -108,6 +188,11 @@
             dropout_layer layer = *(dropout_layer *)net.layers[i];
             forward_dropout_layer(layer, input);
         }
+        else if(net.types[i] == FREEWEIGHT){
+            if(!train) continue;
+            freeweight_layer layer = *(freeweight_layer *)net.layers[i];
+            forward_freeweight_layer(layer, input);
+        }
     }
 }
 
@@ -148,6 +233,8 @@
         return layer.output;
     } else if(net.types[i] == DROPOUT){
         return get_network_output_layer(net, i-1);
+    } else if(net.types[i] == FREEWEIGHT){
+        return get_network_output_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output;
@@ -159,7 +246,9 @@
 }
 float *get_network_output(network net)
 {
-    return get_network_output_layer(net, net.n-1);
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
+    return get_network_output_layer(net, i);
 }
 
 float *get_network_delta_layer(network net, int i)
@@ -175,6 +264,8 @@
         return layer.delta;
     } else if(net.types[i] == DROPOUT){
         return get_network_delta_layer(net, i-1);
+    } else if(net.types[i] == FREEWEIGHT){
+        return get_network_delta_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.delta;
@@ -182,6 +273,14 @@
     return 0;
 }
 
+float get_network_cost(network net)
+{
+    if(net.types[net.n-1] == COST){
+        return ((cost_layer *)net.layers[net.n-1])->output[0];
+    }
+    return 0;
+}
+
 float *get_network_delta(network net)
 {
     return get_network_delta_layer(net, net.n-1);
@@ -212,9 +311,8 @@
     return max_index(out, k);
 }
 
-float backward_network(network net, float *input, float *truth)
+void backward_network(network net, float *input)
 {
-    float error = calculate_error_network(net, truth);
     int i;
     float *prev_input;
     float *prev_delta;
@@ -246,15 +344,59 @@
             connected_layer layer = *(connected_layer *)net.layers[i];
             backward_connected_layer(layer, prev_input, prev_delta);
         }
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            backward_cost_layer(layer, prev_input, prev_delta);
+        }
     }
+}
+
+#ifdef GPU
+float train_network_datum_gpu(network net, float *x, float *y)
+{
+    int x_size = get_network_input_size(net)*net.batch;
+    int y_size = get_network_output_size(net)*net.batch;
+    if(!*net.input_cl){
+        *net.input_cl = cl_make_array(x, x_size);
+        *net.truth_cl = cl_make_array(y, y_size);
+    }else{
+        cl_write_array(*net.input_cl, x, x_size);
+        cl_write_array(*net.truth_cl, y, y_size);
+    }
+    forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
+    //int class = get_predicted_class_network(net);
+    backward_network_gpu(net, *net.input_cl);
+    float error = get_network_cost(net);
+    update_network_gpu(net);
+    //return (y[class]?1:0);
     return error;
 }
+float train_network_sgd_gpu(network net, data d, int n)
+{
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_batch(d, batch, X, y);
+        float err = train_network_datum_gpu(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+#endif
+
 
 float train_network_datum(network net, float *x, float *y)
 {
-    forward_network(net, x, 1);
+    forward_network(net, x, y, 1);
     //int class = get_predicted_class_network(net);
-    float error = backward_network(net, x, y);
+    backward_network(net, x);
+    float error = get_network_cost(net);
     update_network(net);
     //return (y[class]?1:0);
     return error;
@@ -287,8 +429,9 @@
             int index = rand()%d.X.rows;
             float *x = d.X.vals[index];
             float *y = d.y.vals[index];
-            forward_network(net, x, 1);
-            sum += backward_network(net, x, y);
+            forward_network(net, x, y, 1);
+            backward_network(net, x);
+            sum += get_network_cost(net);
         }
         update_network(net);
     }
@@ -329,6 +472,10 @@
         dropout_layer layer = *(dropout_layer *) net.layers[i];
         return layer.inputs;
     }
+    else if(net.types[i] == FREEWEIGHT){
+        freeweight_layer layer = *(freeweight_layer *) net.layers[i];
+        return layer.inputs;
+    }
     else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.inputs;
@@ -351,10 +498,15 @@
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.outputs;
-    } else if(net.types[i] == DROPOUT){
+    }
+    else if(net.types[i] == DROPOUT){
         dropout_layer layer = *(dropout_layer *) net.layers[i];
         return layer.inputs;
     }
+    else if(net.types[i] == FREEWEIGHT){
+        freeweight_layer layer = *(freeweight_layer *) net.layers[i];
+        return layer.inputs;
+    }
     else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.inputs;
@@ -396,7 +548,8 @@
 
 int get_network_output_size(network net)
 {
-    int i = net.n-1;
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
     return get_network_output_size_layer(net, i);
 }
 
@@ -457,7 +610,7 @@
 
 float *network_predict(network net, float *input)
 {
-    forward_network(net, input, 0);
+    forward_network(net, input, 0, 0);
     float *out = get_network_output(net);
     return out;
 }

--
Gitblit v1.10.0