From 9bae70b22549b68f5cdeece8b6c3b3de00c22714 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Mon, 16 Apr 2018 23:51:11 +0000
Subject: [PATCH] Accelerated by another 5% using FP16/32 Batch-norm for Tensor Cores.

---
 src/batchnorm_layer.c        |   28 ++++----
 Makefile                     |    1 
 src/convolutional_layer.c    |    3 +
 src/convolutional_kernels.cu |   91 ++++++++++++++++++++++++++++-
 src/layer.h                  |    2 
 5 files changed, 105 insertions(+), 20 deletions(-)

diff --git a/Makefile b/Makefile
index 3a6584c..b6119ae 100644
--- a/Makefile
+++ b/Makefile
@@ -91,6 +91,7 @@
 ifeq ($(CUDNN_HALF), 1)
 COMMON+= -DCUDNN_HALF
 CFLAGS+= -DCUDNN_HALF
+ARCH+= -gencode arch=compute_70,code=[sm_70,compute_70]
 endif
 
 OBJ=http_stream.o gemm.o utils.o cuda.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o reorg_layer.o reorg_old_layer.o super.o voxel.o tree.o yolo_layer.o upsample_layer.o
diff --git a/src/batchnorm_layer.c b/src/batchnorm_layer.c
index 883ab34..d35d9d2 100644
--- a/src/batchnorm_layer.c
+++ b/src/batchnorm_layer.c
@@ -190,18 +190,18 @@
 			&one,
 			&zero,
 			l.normDstTensorDesc,
-			l.x_gpu,
+			l.x_gpu,				// input
 			l.normDstTensorDesc,
-			l.output_gpu,
+			l.output_gpu,			// output
 			l.normTensorDesc,
 			l.scales_gpu,
 			l.biases_gpu,
 			.01,
-			l.rolling_mean_gpu,
-			l.rolling_variance_gpu,
+			l.rolling_mean_gpu,		// output (should be FP32)
+			l.rolling_variance_gpu,	// output (should be FP32)
 			.00001,
-			l.mean_gpu,
-			l.variance_gpu);
+			l.mean_gpu,			// output (should be FP32)
+			l.variance_gpu);	// output (should be FP32)
 #else
 		fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
 		fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
@@ -243,18 +243,18 @@
 		&one,
 		&one,
 		l.normDstTensorDesc,
-		l.x_gpu,
+		l.x_gpu,				// input
 		l.normDstTensorDesc,
-		l.delta_gpu,
+		l.delta_gpu,			// input
 		l.normDstTensorDesc,
-		l.x_norm_gpu,
+		l.x_norm_gpu,			// output
 		l.normTensorDesc,
-		l.scales_gpu,
-		l.scale_updates_gpu,
-		l.bias_updates_gpu,
+		l.scales_gpu,			// output (should be FP32)
+		l.scale_updates_gpu,	// output (should be FP32)
+		l.bias_updates_gpu,		// output (should be FP32)
 		.00001,
-		l.mean_gpu,
-		l.variance_gpu);
+		l.mean_gpu,				// input (should be FP32)
+		l.variance_gpu);		// input (should be FP32)
 	copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
 #else
 	backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index 603d531..324fc50 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -169,7 +169,51 @@
 		l.dstTensorDesc,
 		output16);
 	
-	cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
+
+	if (l.batch_normalize) 
+	{		
+		if (state.train) // Training
+		{
+			copy_ongpu(l.outputs*l.batch / 2, output16, 1, l.x_gpu, 1);
+			//cudaMemcpyAsync(l.x_gpu, output16, l.outputs*l.batch*sizeof(half), cudaMemcpyDefault, get_cuda_stream());
+			float one = 1;
+			float zero = 0;
+			// Batch-normalization can still take FP16 inputs and outputs, saving half the bandwidth
+			// compared to FP32, it�s just that the statistics and value adjustment should be done in FP32.
+			cudnnBatchNormalizationForwardTraining(cudnn_handle(),
+				CUDNN_BATCHNORM_SPATIAL,
+				&one,
+				&zero,
+				l.normDstTensorDescF16,
+				l.x_gpu,			// input
+				l.normDstTensorDescF16,
+				output16,			// output
+				l.normTensorDesc,
+				l.scales_gpu,
+				l.biases_gpu,
+				.01,
+				l.rolling_mean_gpu,		// output (should be FP32)
+				l.rolling_variance_gpu,	// output (should be FP32)
+				.00001,
+				l.mean_gpu,			// output (should be FP32)
+				l.variance_gpu);	// output (should be FP32)
+
+			cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
+			//forward_batchnorm_layer_gpu(l, state);
+		}
+		else // Detection
+		{
+			cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
+			normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+			scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+			add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+		}
+	}
+	else // BIAS only
+	{
+		cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
+		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
+	}	
 
 #else
 
@@ -186,7 +230,7 @@
                 &one,
                 l.dstTensorDesc,
                 l.output_gpu);
-#endif
+#endif	// CUDNN_HALF
 
 
 #else
@@ -203,12 +247,14 @@
     }
 #endif
 
+#ifndef CUDNN_HALF
     if (l.batch_normalize) {
         forward_batchnorm_layer_gpu(l, state);
 	}
 	else {
 		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
 	}
+#endif // no CUDNN_HALF
 
     activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
     //if(l.dot > 0) dot_error_gpu(l);
@@ -222,12 +268,13 @@
 
     backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
 
+#ifndef CUDNN_HALF
     if(l.batch_normalize){
         backward_batchnorm_layer_gpu(l, state);
-        //axpy_ongpu(l.outputs*l.batch, -state.net.decay, l.x_gpu, 1, l.delta_gpu, 1);
     } else {
-        //axpy_ongpu(l.outputs*l.batch, -state.net.decay, l.output_gpu, 1, l.delta_gpu, 1);
+		//backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
     }
+#endif // no CUDNN_HALF
     float *original_input = state.input;
 
     if(l.xnor) state.input = l.binary_input_gpu;
@@ -256,7 +303,41 @@
 
 	cuda_convert_f32_to_f16(state.input, input16_size, input16);
 	cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, delta16);
-	
+
+	if (l.batch_normalize) {
+		//if (!state.train) {
+		//	l.mean_gpu = l.rolling_mean_gpu;
+		//	l.variance_gpu = l.rolling_variance_gpu;
+		//}
+		float one = 1;
+		float zero = 0;
+		cudnnBatchNormalizationBackward(cudnn_handle(),
+			CUDNN_BATCHNORM_SPATIAL,
+			&one,
+			&zero,
+			&one,
+			&one,
+			l.normDstTensorDescF16,
+			l.x_gpu,				// input
+			l.normDstTensorDescF16,
+			delta16,				// input
+			l.normDstTensorDescF16,
+			l.x_norm_gpu,			// output
+			l.normTensorDesc,
+			l.scales_gpu,			// output (should be FP32)
+			l.scale_updates_gpu,	// output (should be FP32)
+			l.bias_updates_gpu,		// output (should be FP32)
+			.00001,
+			l.mean_gpu,				// input (should be FP32)
+			l.variance_gpu);		// input (should be FP32)
+		copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, 1, delta16, 1);
+		//cudaMemcpyAsync(delta16, l.x_norm_gpu, l.outputs*l.batch * sizeof(half), cudaMemcpyDefault, get_cuda_stream());
+	}
+	else
+	{
+		//backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
+	}
+
 	// convert input: state.input (x), l.delta_gpu (y) from fp32 to fp16
 	// get output: l.weight_updates_gpu (dw) and convert it to fp32 (ONLY if it is fp16)
 
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 91c5b3c..9a76bdf 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -178,6 +178,8 @@
 	// batch norm
 	cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1);
 	cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
+
+	cudnnSetTensor4dDescriptor(l->normDstTensorDescF16, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
 #if(CUDNN_MAJOR >= 6)
 	cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT);	// cudnn >= 6.0
 #else
@@ -379,6 +381,7 @@
         }
 #ifdef CUDNN		
 		cudnnCreateTensorDescriptor(&l.normDstTensorDesc);
+		cudnnCreateTensorDescriptor(&l.normDstTensorDescF16);
 		cudnnCreateTensorDescriptor(&l.normTensorDesc);
         cudnnCreateTensorDescriptor(&l.srcTensorDesc);
         cudnnCreateTensorDescriptor(&l.dstTensorDesc);
diff --git a/src/layer.h b/src/layer.h
index 75c0358..81e27ad 100644
--- a/src/layer.h
+++ b/src/layer.h
@@ -281,7 +281,7 @@
     #ifdef CUDNN
     cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc;
     cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc;
-	cudnnTensorDescriptor_t normTensorDesc, normDstTensorDesc;
+	cudnnTensorDescriptor_t normTensorDesc, normDstTensorDesc, normDstTensorDescF16;
     cudnnFilterDescriptor_t weightDesc;
     cudnnFilterDescriptor_t dweightDesc;
     cudnnConvolutionDescriptor_t convDesc;

--
Gitblit v1.10.0