From 9bae70b22549b68f5cdeece8b6c3b3de00c22714 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Mon, 16 Apr 2018 23:51:11 +0000
Subject: [PATCH] Accelerated by another 5% using FP16/32 Batch-norm for Tensor Cores.
---
src/convolutional_kernels.cu | 91 +++++++++++++++++++++++++++++++++++++++++++--
1 files changed, 86 insertions(+), 5 deletions(-)
diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index 603d531..324fc50 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -169,7 +169,51 @@
l.dstTensorDesc,
output16);
- cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
+
+ if (l.batch_normalize)
+ {
+ if (state.train) // Training
+ {
+ copy_ongpu(l.outputs*l.batch / 2, output16, 1, l.x_gpu, 1);
+ //cudaMemcpyAsync(l.x_gpu, output16, l.outputs*l.batch*sizeof(half), cudaMemcpyDefault, get_cuda_stream());
+ float one = 1;
+ float zero = 0;
+ // Batch-normalization can still take FP16 inputs and outputs, saving half the bandwidth
+ // compared to FP32, it�s just that the statistics and value adjustment should be done in FP32.
+ cudnnBatchNormalizationForwardTraining(cudnn_handle(),
+ CUDNN_BATCHNORM_SPATIAL,
+ &one,
+ &zero,
+ l.normDstTensorDescF16,
+ l.x_gpu, // input
+ l.normDstTensorDescF16,
+ output16, // output
+ l.normTensorDesc,
+ l.scales_gpu,
+ l.biases_gpu,
+ .01,
+ l.rolling_mean_gpu, // output (should be FP32)
+ l.rolling_variance_gpu, // output (should be FP32)
+ .00001,
+ l.mean_gpu, // output (should be FP32)
+ l.variance_gpu); // output (should be FP32)
+
+ cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
+ //forward_batchnorm_layer_gpu(l, state);
+ }
+ else // Detection
+ {
+ cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
+ normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+ scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+ add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+ }
+ }
+ else // BIAS only
+ {
+ cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
+ add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
+ }
#else
@@ -186,7 +230,7 @@
&one,
l.dstTensorDesc,
l.output_gpu);
-#endif
+#endif // CUDNN_HALF
#else
@@ -203,12 +247,14 @@
}
#endif
+#ifndef CUDNN_HALF
if (l.batch_normalize) {
forward_batchnorm_layer_gpu(l, state);
}
else {
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
}
+#endif // no CUDNN_HALF
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
//if(l.dot > 0) dot_error_gpu(l);
@@ -222,12 +268,13 @@
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
+#ifndef CUDNN_HALF
if(l.batch_normalize){
backward_batchnorm_layer_gpu(l, state);
- //axpy_ongpu(l.outputs*l.batch, -state.net.decay, l.x_gpu, 1, l.delta_gpu, 1);
} else {
- //axpy_ongpu(l.outputs*l.batch, -state.net.decay, l.output_gpu, 1, l.delta_gpu, 1);
+ //backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
}
+#endif // no CUDNN_HALF
float *original_input = state.input;
if(l.xnor) state.input = l.binary_input_gpu;
@@ -256,7 +303,41 @@
cuda_convert_f32_to_f16(state.input, input16_size, input16);
cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, delta16);
-
+
+ if (l.batch_normalize) {
+ //if (!state.train) {
+ // l.mean_gpu = l.rolling_mean_gpu;
+ // l.variance_gpu = l.rolling_variance_gpu;
+ //}
+ float one = 1;
+ float zero = 0;
+ cudnnBatchNormalizationBackward(cudnn_handle(),
+ CUDNN_BATCHNORM_SPATIAL,
+ &one,
+ &zero,
+ &one,
+ &one,
+ l.normDstTensorDescF16,
+ l.x_gpu, // input
+ l.normDstTensorDescF16,
+ delta16, // input
+ l.normDstTensorDescF16,
+ l.x_norm_gpu, // output
+ l.normTensorDesc,
+ l.scales_gpu, // output (should be FP32)
+ l.scale_updates_gpu, // output (should be FP32)
+ l.bias_updates_gpu, // output (should be FP32)
+ .00001,
+ l.mean_gpu, // input (should be FP32)
+ l.variance_gpu); // input (should be FP32)
+ copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, 1, delta16, 1);
+ //cudaMemcpyAsync(delta16, l.x_norm_gpu, l.outputs*l.batch * sizeof(half), cudaMemcpyDefault, get_cuda_stream());
+ }
+ else
+ {
+ //backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
+ }
+
// convert input: state.input (x), l.delta_gpu (y) from fp32 to fp16
// get output: l.weight_updates_gpu (dw) and convert it to fp32 (ONLY if it is fp16)
--
Gitblit v1.10.0