From 9c2c220c88aff4d0bcbdd5b03b10c6d1a7db56d3 Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sun, 16 Sep 2018 03:14:14 +0000
Subject: [PATCH] Moving files from MTGCardDetector #2

---
 src/network.c |  320 ++++++++++++++++++++++++++++++++++++++++++++++++----
 1 files changed, 291 insertions(+), 29 deletions(-)

diff --git a/src/network.c b/src/network.c
index 56a316c..2ad5141 100644
--- a/src/network.c
+++ b/src/network.c
@@ -27,6 +27,26 @@
 #include "dropout_layer.h"
 #include "route_layer.h"
 #include "shortcut_layer.h"
+#include "yolo_layer.h"
+#include "upsample_layer.h"
+#include "parser.h"
+
+network *load_network_custom(char *cfg, char *weights, int clear, int batch)
+{
+    printf(" Try to load cfg: %s, weights: %s, clear = %d \n", cfg, weights, clear);
+    network *net = calloc(1, sizeof(network));
+    *net = parse_network_cfg_custom(cfg, batch);
+    if (weights && weights[0] != 0) {
+        load_weights(net, weights);
+    }
+    if (clear) (*net->seen) = 0;
+    return net;
+}
+
+network *load_network(char *cfg, char *weights, int clear)
+{
+    return load_network_custom(cfg, weights, clear, 0);
+}
 
 int get_current_batch(network net)
 {
@@ -45,11 +65,33 @@
     #endif
 }
 
+void reset_network_state(network *net, int b)
+{
+    int i;
+    for (i = 0; i < net->n; ++i) {
+#ifdef GPU
+        layer l = net->layers[i];
+        if (l.state_gpu) {
+            fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
+        }
+        if (l.h_gpu) {
+            fill_ongpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1);
+        }
+#endif
+    }
+}
+
+void reset_rnn(network *net)
+{
+    reset_network_state(net, 0);
+}
+
 float get_current_rate(network net)
 {
     int batch_num = get_current_batch(net);
     int i;
     float rate;
+    if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
     switch (net.policy) {
         case CONSTANT:
             return net.learning_rate;
@@ -66,8 +108,9 @@
         case EXP:
             return net.learning_rate * pow(net.gamma, batch_num);
         case POLY:
-            if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
             return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+            //if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
+            //return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
         case RANDOM:
             return net.learning_rate * pow(rand_uniform(0,1), net.power);
         case SIG:
@@ -135,10 +178,15 @@
     net.n = n;
     net.layers = calloc(net.n, sizeof(layer));
     net.seen = calloc(1, sizeof(int));
-    #ifdef GPU
+#ifdef GPU
     net.input_gpu = calloc(1, sizeof(float *));
     net.truth_gpu = calloc(1, sizeof(float *));
-    #endif
+
+    net.input16_gpu = calloc(1, sizeof(float *));
+    net.output16_gpu = calloc(1, sizeof(float *));
+    net.max_input16_size = calloc(1, sizeof(size_t));
+    net.max_output16_size = calloc(1, sizeof(size_t));
+#endif
     return net;
 }
 
@@ -174,7 +222,7 @@
 {
 #ifdef GPU
     if (gpu_index >= 0) return get_network_output_gpu(net);
-#endif 
+#endif
     int i;
     for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
     return net.layers[i].output;
@@ -314,7 +362,20 @@
         net->layers[i].batch = b;
 #ifdef CUDNN
         if(net->layers[i].type == CONVOLUTIONAL){
-            cudnn_convolutional_setup(net->layers + i);
+            cudnn_convolutional_setup(net->layers + i, cudnn_fastest);
+            /*
+            layer *l = net->layers + i;
+            cudnn_convolutional_setup(l, cudnn_fastest);
+            // check for excessive memory consumption
+            size_t free_byte;
+            size_t total_byte;
+            check_error(cudaMemGetInfo(&free_byte, &total_byte));
+            if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
+                printf(" used slow CUDNN algo without Workspace! \n");
+                cudnn_convolutional_setup(l, cudnn_smallest);
+                l->workspace_size = get_workspace_size(*l);
+            }
+            */
         }
 #endif
     }
@@ -326,6 +387,12 @@
     cuda_set_device(net->gpu_index);
     if(gpu_index >= 0){
         cuda_free(net->workspace);
+        if (net->input_gpu) {
+            cuda_free(*net->input_gpu);
+            *net->input_gpu = 0;
+            cuda_free(*net->truth_gpu);
+            *net->truth_gpu = 0;
+        }
     }
 #endif
     int i;
@@ -338,6 +405,7 @@
     //fflush(stderr);
     for (i = 0; i < net->n; ++i){
         layer l = net->layers[i];
+        //printf(" %d: layer = %d,", i, l.type);
         if(l.type == CONVOLUTIONAL){
             resize_convolutional_layer(&l, w, h);
         }else if(l.type == CROP){
@@ -346,8 +414,14 @@
             resize_maxpool_layer(&l, w, h);
         }else if(l.type == REGION){
             resize_region_layer(&l, w, h);
+        }else if (l.type == YOLO) {
+            resize_yolo_layer(&l, w, h);
         }else if(l.type == ROUTE){
             resize_route_layer(&l, net);
+        }else if (l.type == SHORTCUT) {
+            resize_shortcut_layer(&l, w, h);
+        }else if (l.type == UPSAMPLE) {
+            resize_upsample_layer(&l, w, h);
         }else if(l.type == REORG){
             resize_reorg_layer(&l, w, h);
         }else if(l.type == AVGPOOL){
@@ -357,7 +431,7 @@
         }else if(l.type == COST){
             resize_cost_layer(&l, inputs);
         }else{
-			fprintf(stderr, "Resizing type %d \n", (int)l.type);
+            fprintf(stderr, "Resizing type %d \n", (int)l.type);
             error("Cannot resize this type of layer");
         }
         if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
@@ -369,13 +443,9 @@
     }
 #ifdef GPU
     if(gpu_index >= 0){
-        if(net->input_gpu) {
-            cuda_free(*net->input_gpu);
-            *net->input_gpu = 0;
-            cuda_free(*net->truth_gpu);
-            *net->truth_gpu = 0;
-        }
-        net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+        printf(" try to allocate workspace = %zu * sizeof(float), ", workspace_size / sizeof(float) + 1);
+        net->workspace = cuda_make_array(0, workspace_size/sizeof(float) + 1);
+        printf(" CUDA allocate done! \n");
     }else {
         free(net->workspace);
         net->workspace = calloc(1, workspace_size);
@@ -423,6 +493,11 @@
     return def;
 }
 
+layer* get_network_layer(network* net, int i)
+{
+    return net->layers + i;
+}
+
 image get_network_image(network net)
 {
     int i;
@@ -445,7 +520,7 @@
         if(l.type == CONVOLUTIONAL){
             prev = visualize_convolutional_layer(l, buff, prev);
         }
-    } 
+    }
 }
 
 void top_predictions(network net, int k, int *index)
@@ -474,6 +549,119 @@
     return out;
 }
 
+int num_detections(network *net, float thresh)
+{
+    int i;
+    int s = 0;
+    for (i = 0; i < net->n; ++i) {
+        layer l = net->layers[i];
+        if (l.type == YOLO) {
+            s += yolo_num_detections(l, thresh);
+        }
+        if (l.type == DETECTION || l.type == REGION) {
+            s += l.w*l.h*l.n;
+        }
+    }
+    return s;
+}
+
+detection *make_network_boxes(network *net, float thresh, int *num)
+{
+    layer l = net->layers[net->n - 1];
+    int i;
+    int nboxes = num_detections(net, thresh);
+    if (num) *num = nboxes;
+    detection *dets = calloc(nboxes, sizeof(detection));
+    for (i = 0; i < nboxes; ++i) {
+        dets[i].prob = calloc(l.classes, sizeof(float));
+        if (l.coords > 4) {
+            dets[i].mask = calloc(l.coords - 4, sizeof(float));
+        }
+    }
+    return dets;
+}
+
+
+void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter)
+{
+    box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+    float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+    int i, j;
+    for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float));
+    get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
+    for (j = 0; j < l.w*l.h*l.n; ++j) {
+        dets[j].classes = l.classes;
+        dets[j].bbox = boxes[j];
+        dets[j].objectness = 1;
+        for (i = 0; i < l.classes; ++i) {
+            dets[j].prob[i] = probs[j][i];
+        }
+    }
+
+    free(boxes);
+    free_ptrs((void **)probs, l.w*l.h*l.n);
+
+    //correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative);
+    correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter);
+}
+
+void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter)
+{
+    int prev_classes = -1;
+    int j;
+    for (j = 0; j < net->n; ++j) {
+        layer l = net->layers[j];
+        if (l.type == YOLO) {
+            int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
+            dets += count;
+            if (prev_classes < 0) prev_classes = l.classes;
+            else if (prev_classes != l.classes) {
+                printf(" Error: Different [yolo] layers have different number of classes = %d and %d - check your cfg-file! \n",
+                    prev_classes, l.classes);
+            }
+        }
+        if (l.type == REGION) {
+            custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
+            //get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
+            dets += l.w*l.h*l.n;
+        }
+        if (l.type == DETECTION) {
+            get_detection_detections(l, w, h, thresh, dets);
+            dets += l.w*l.h*l.n;
+        }
+    }
+}
+
+detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter)
+{
+    detection *dets = make_network_boxes(net, thresh, num);
+    fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter);
+    return dets;
+}
+
+void free_detections(detection *dets, int n)
+{
+    int i;
+    for (i = 0; i < n; ++i) {
+        free(dets[i].prob);
+        if (dets[i].mask) free(dets[i].mask);
+    }
+    free(dets);
+}
+
+float *network_predict_image(network *net, image im)
+{
+    //image imr = letterbox_image(im, net->w, net->h);
+    image imr = resize_image(im, net->w, net->h);
+    set_batch_network(net, 1);
+    float *p = network_predict(*net, imr.data);
+    free_image(imr);
+    return p;
+}
+
+int network_width(network *net) { return net->w; }
+int network_height(network *net) { return net->h; }
+
 matrix network_predict_data_multi(network net, data test, int n)
 {
     int i,j,b,m;
@@ -496,7 +684,7 @@
         }
     }
     free(X);
-    return pred;   
+    return pred;
 }
 
 matrix network_predict_data(network net, data test)
@@ -519,7 +707,7 @@
         }
     }
     free(X);
-    return pred;   
+    return pred;
 }
 
 void print_network(network net)
@@ -561,7 +749,7 @@
     printf("%5d %5d\n%5d %5d\n", a, b, c, d);
     float num = pow((abs(b - c) - 1.), 2.);
     float den = b + c;
-    printf("%f\n", num/den); 
+    printf("%f\n", num/den);
 }
 
 float network_accuracy(network net, data d)
@@ -592,19 +780,93 @@
 
 void free_network(network net)
 {
-	int i;
-	for (i = 0; i < net.n; ++i) {
-		free_layer(net.layers[i]);
-	}
-	free(net.layers);
+    int i;
+    for (i = 0; i < net.n; ++i) {
+        free_layer(net.layers[i]);
+    }
+    free(net.layers);
+
+    free(net.scales);
+    free(net.steps);
+    free(net.seen);
+
 #ifdef GPU
-	if (gpu_index >= 0) cuda_free(net.workspace);
-	else free(net.workspace);
-	if (*net.input_gpu) cuda_free(*net.input_gpu);
-	if (*net.truth_gpu) cuda_free(*net.truth_gpu);
-	if (net.input_gpu) free(net.input_gpu);
-	if (net.truth_gpu) free(net.truth_gpu);
+    if (gpu_index >= 0) cuda_free(net.workspace);
+    else free(net.workspace);
+    if (*net.input_gpu) cuda_free(*net.input_gpu);
+    if (*net.truth_gpu) cuda_free(*net.truth_gpu);
+    if (net.input_gpu) free(net.input_gpu);
+    if (net.truth_gpu) free(net.truth_gpu);
+
+    if (*net.input16_gpu) cuda_free(*net.input16_gpu);
+    if (*net.output16_gpu) cuda_free(*net.output16_gpu);
+    if (net.input16_gpu) free(net.input16_gpu);
+    if (net.output16_gpu) free(net.output16_gpu);
+    if (net.max_input16_size) free(net.max_input16_size);
+    if (net.max_output16_size) free(net.max_output16_size);
 #else
-	free(net.workspace);
+    free(net.workspace);
 #endif
 }
+
+
+void fuse_conv_batchnorm(network net)
+{
+    int j;
+    for (j = 0; j < net.n; ++j) {
+        layer *l = &net.layers[j];
+
+        if (l->type == CONVOLUTIONAL) {
+            //printf(" Merges Convolutional-%d and batch_norm \n", j);
+
+            if (l->batch_normalize) {
+                int f;
+                for (f = 0; f < l->n; ++f)
+                {
+                    l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
+
+                    const size_t filter_size = l->size*l->size*l->c;
+                    int i;
+                    for (i = 0; i < filter_size; ++i) {
+                        int w_index = f*filter_size + i;
+
+                        l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
+                    }
+                }
+
+                l->batch_normalize = 0;
+#ifdef GPU
+                if (gpu_index >= 0) {
+                    push_convolutional_layer(*l);
+                }
+#endif
+            }
+        }
+        else {
+            //printf(" Fusion skip layer type: %d \n", l->type);
+        }
+    }
+}
+
+
+
+void calculate_binary_weights(network net)
+{
+    int j;
+    for (j = 0; j < net.n; ++j) {
+        layer *l = &net.layers[j];
+
+        if (l->type == CONVOLUTIONAL) {
+            //printf(" Merges Convolutional-%d and batch_norm \n", j);
+
+            if (l->xnor) {
+                //printf("\n %d \n", j);
+                l->lda_align = 256; // 256bit for AVX2
+
+                binary_align_weights(l);
+            }
+        }
+    }
+    //printf("\n calculate_binary_weights Done! \n");
+
+}
\ No newline at end of file

--
Gitblit v1.10.0