From 9d42f49a240136a8cd643cdc1f98230d4f22b05e Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 25 Aug 2015 01:27:42 +0000
Subject: [PATCH] changing data loading

---
 src/coco.c |  139 +++++++++++++++++++++++++++------------------
 1 files changed, 83 insertions(+), 56 deletions(-)

diff --git a/src/coco.c b/src/coco.c
index 3f74be7..d2a108a 100644
--- a/src/coco.c
+++ b/src/coco.c
@@ -1,3 +1,5 @@
+#include <stdio.h>
+
 #include "network.h"
 #include "detection_layer.h"
 #include "cost_layer.h"
@@ -5,44 +7,40 @@
 #include "parser.h"
 #include "box.h"
 
+#ifdef OPENCV
+#include "opencv2/highgui/highgui_c.h"
+#endif
 
 char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"};
 
-void draw_coco(image im, float *box, int side, int objectness, char *label)
+int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
+
+void draw_coco(image im, float *pred, int side, char *label)
 {
-    int classes = 80;
-    int elems = 4+classes+objectness;
+    int classes = 81;
+    int elems = 4+classes;
     int j;
     int r, c;
 
     for(r = 0; r < side; ++r){
         for(c = 0; c < side; ++c){
             j = (r*side + c) * elems;
-            float scale = 1;
-            if(objectness) scale = 1 - box[j++];
-            int class = max_index(box+j, classes);
-            if(scale * box[j+class] > 0.2){
-                int width = box[j+class]*5 + 1;
-                printf("%f %s\n", scale * box[j+class], coco_classes[class]);
+            int class = max_index(pred+j, classes);
+            if (class == 0) continue;
+            if (pred[j+class] > 0.2){
+                int width = pred[j+class]*5 + 1;
+                printf("%f %s\n", pred[j+class], coco_classes[class-1]);
                 float red = get_color(0,class,classes);
                 float green = get_color(1,class,classes);
                 float blue = get_color(2,class,classes);
 
                 j += classes;
-                float x = box[j+0];
-                float y = box[j+1];
-                x = (x+c)/side;
-                y = (y+r)/side;
-                float w = box[j+2]; //*maxwidth;
-                float h = box[j+3]; //*maxheight;
-                h = h*h;
-                w = w*w;
 
-                int left  = (x-w/2)*im.w;
-                int right = (x+w/2)*im.w;
-                int top   = (y-h/2)*im.h;
-                int bot   = (y+h/2)*im.h;
-                draw_box_width(im, left, top, right, bot, width, red, green, blue);
+                box predict = {pred[j+0], pred[j+1], pred[j+2], pred[j+3]};
+                box anchor = {(c+.5)/side, (r+.5)/side, .5, .5};
+                box decode = decode_box(predict, anchor);
+                
+                draw_bbox(im, decode, width, red, green, blue);
             }
         }
     }
@@ -62,39 +60,47 @@
     if(weightfile){
         load_weights(&net, weightfile);
     }
-    detection_layer layer = get_network_detection_layer(net);
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 128;
     int i = net.seen/imgs;
     data train, buffer;
 
-    int classes = layer.classes;
-    int background = layer.objectness;
-    int side = sqrt(get_detection_layer_locations(layer));
+    int classes = 81;
+    int side = 7;
 
-    char **paths;
     list *plist = get_paths(train_images);
     int N = plist->size;
+    char **paths = (char **)list_to_array(plist);
 
-    paths = (char **)list_to_array(plist);
-    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
+    load_args args = {0};
+    args.w = net.w;
+    args.h = net.h;
+    args.paths = paths;
+    args.n = imgs;
+    args.m = plist->size;
+    args.classes = classes;
+    args.num_boxes = side;
+    args.d = &buffer;
+    args.type = REGION_DATA;
+
+    pthread_t load_thread = load_data_in_thread(args);
     clock_t time;
     while(i*imgs < N*120){
         i += 1;
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
-        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
+        load_thread = load_data_in_thread(args);
 
         printf("Loaded: %lf seconds\n", sec(clock()-time));
 
-        /*
-           image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
-           image copy = copy_image(im);
-           draw_coco(copy, train.y.vals[114], 7, layer.objectness, "truth");
-           cvWaitKey(0);
-           free_image(copy);
-         */
+/*
+        image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
+        image copy = copy_image(im);
+        draw_coco(copy, train.y.vals[114], 7, "truth");
+        cvWaitKey(0);
+        free_image(copy);
+        */
 
         time=clock();
         float loss = train_network(net, train);
@@ -144,7 +150,7 @@
     }
 }
 
-void print_cocos(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
+void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
 {
     int i, j;
     for(i = 0; i < num_boxes*num_boxes; ++i){
@@ -158,13 +164,23 @@
         if (xmax > w) xmax = w;
         if (ymax > h) ymax = h;
 
+        float bx = xmin;
+        float by = ymin;
+        float bw = xmax - xmin;
+        float bh = ymax - ymin;
+
         for(j = 0; j < classes; ++j){
-            if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
-                    xmin, ymin, xmax, ymax);
+            if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
         }
     }
 }
 
+int get_coco_image_id(char *filename)
+{
+    char *p = strrchr(filename, '_');
+    return atoi(p+1);
+}
+
 void validate_coco(char *cfgfile, char *weightfile)
 {
     network net = parse_network_cfg(cfgfile);
@@ -176,8 +192,8 @@
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     srand(time(0));
 
-    char *base = "results/comp4_det_test_";
-    list *plist = get_paths("data/voc.2012test.list");
+    char *base = "/home/pjreddie/backup/";
+    list *plist = get_paths("data/coco_val_5k.list");
     char **paths = (char **)list_to_array(plist);
 
     int classes = layer.classes;
@@ -186,12 +202,11 @@
     int num_boxes = sqrt(get_detection_layer_locations(layer));
 
     int j;
-    FILE **fps = calloc(classes, sizeof(FILE *));
-    for(j = 0; j < classes; ++j){
-        char buff[1024];
-        snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
-        fps[j] = fopen(buff, "w");
-    }
+    char buff[1024];
+    snprintf(buff, 1024, "%s/coco_results.json", base);
+    FILE *fp = fopen(buff, "w");
+    fprintf(fp, "[\n");
+
     box *boxes = calloc(num_boxes*num_boxes, sizeof(box));
     float **probs = calloc(num_boxes*num_boxes, sizeof(float *));
     for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *));
@@ -200,10 +215,15 @@
     int i=0;
     int t;
 
-    float thresh = .001;
+    float thresh = .01;
     int nms = 1;
     float iou_thresh = .5;
 
+    load_args args = {0};
+    args.w = net.w;
+    args.h = net.h;
+    args.type = IMAGE_DATA;
+
     int nthreads = 8;
     image *val = calloc(nthreads, sizeof(image));
     image *val_resized = calloc(nthreads, sizeof(image));
@@ -211,7 +231,10 @@
     image *buf_resized = calloc(nthreads, sizeof(image));
     pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
     for(t = 0; t < nthreads; ++t){
-        thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
+        args.path = paths[i+t];
+        args.im = &buf[t];
+        args.resized = &buf_resized[t];
+        thr[t] = load_data_in_thread(args);
     }
     time_t start = time(0);
     for(i = nthreads; i < m+nthreads; i += nthreads){
@@ -222,23 +245,28 @@
             val_resized[t] = buf_resized[t];
         }
         for(t = 0; t < nthreads && i+t < m; ++t){
-            thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
+            args.path = paths[i+t];
+            args.im = &buf[t];
+            args.resized = &buf_resized[t];
+            thr[t] = load_data_in_thread(args);
         }
         for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
             char *path = paths[i+t-nthreads];
-            char *id = basecfg(path);
+            int image_id = get_coco_image_id(path);
             float *X = val_resized[t].data;
             float *predictions = network_predict(net, X);
             int w = val[t].w;
             int h = val[t].h;
             convert_cocos(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes);
             if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
-            print_cocos(fps, id, boxes, probs, num_boxes, classes, w, h);
-            free(id);
+            print_cocos(fp, image_id, boxes, probs, num_boxes, classes, w, h);
             free_image(val[t]);
             free_image(val_resized[t]);
         }
     }
+    fseek(fp, -2, SEEK_CUR); 
+    fprintf(fp, "\n]\n");
+    fclose(fp);
     fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
 }
 
@@ -249,7 +277,6 @@
     if(weightfile){
         load_weights(&net, weightfile);
     }
-    detection_layer layer = get_network_detection_layer(net);
     set_batch_network(&net, 1);
     srand(2222222);
     clock_t time;
@@ -269,7 +296,7 @@
         time=clock();
         float *predictions = network_predict(net, X);
         printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
-        draw_coco(im, predictions, 7, layer.objectness, "predictions");
+        draw_coco(im, predictions, 7, "predictions");
         free_image(im);
         free_image(sized);
 #ifdef OPENCV

--
Gitblit v1.10.0