From a19604bf5fed9ca1c708e96bfe4879144b33b90f Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 08 Sep 2016 05:52:11 +0000
Subject: [PATCH] ok back
---
src/classifier.c | 223 +++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 files changed, 222 insertions(+), 1 deletions(-)
diff --git a/src/classifier.c b/src/classifier.c
index ee6d212..7ab70e2 100644
--- a/src/classifier.c
+++ b/src/classifier.c
@@ -39,6 +39,18 @@
return options;
}
+float *get_regression_values(char **labels, int n)
+{
+ float *v = calloc(n, sizeof(float));
+ int i;
+ for(i = 0; i < n; ++i){
+ char *p = strchr(labels[i], ' ');
+ *p = 0;
+ v[i] = atof(p+1);
+ }
+ return v;
+}
+
void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
{
int nthreads = 8;
@@ -83,8 +95,10 @@
args.min = net.min_crop;
args.max = net.max_crop;
args.angle = net.angle;
+ args.aspect = net.aspect;
args.exposure = net.exposure;
args.saturation = net.saturation;
+ args.hue = net.hue;
args.size = net.w;
args.paths = paths;
@@ -116,6 +130,7 @@
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
+ #ifdef OPENCV
if(0){
int u;
for(u = 0; u < imgs; ++u){
@@ -124,6 +139,7 @@
cvWaitKey(0);
}
}
+ #endif
float loss = train_network(net, train);
if(avg_loss == -1) avg_loss = loss;
@@ -440,7 +456,7 @@
char **labels = get_labels(label_list);
list *plist = get_paths(valid_list);
- int scales[] = {192, 224, 288, 320, 352};
+ int scales[] = {224, 288, 320, 352, 384};
int nscales = sizeof(scales)/sizeof(scales[0]);
char **paths = (char **)list_to_array(plist);
@@ -484,6 +500,88 @@
}
}
+void try_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int layer_num)
+{
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ set_batch_network(&net, 1);
+ srand(2222222);
+
+ list *options = read_data_cfg(datacfg);
+
+ char *name_list = option_find_str(options, "names", 0);
+ if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
+ int top = option_find_int(options, "top", 1);
+
+ int i = 0;
+ char **names = get_labels(name_list);
+ clock_t time;
+ int *indexes = calloc(top, sizeof(int));
+ char buff[256];
+ char *input = buff;
+ while(1){
+ if(filename){
+ strncpy(input, filename, 256);
+ }else{
+ printf("Enter Image Path: ");
+ fflush(stdout);
+ input = fgets(input, 256, stdin);
+ if(!input) return;
+ strtok(input, "\n");
+ }
+ image orig = load_image_color(input, 0, 0);
+ image r = resize_min(orig, 256);
+ image im = crop_image(r, (r.w - 224 - 1)/2 + 1, (r.h - 224 - 1)/2 + 1, 224, 224);
+ float mean[] = {0.48263312050943, 0.45230225481413, 0.40099074308742};
+ float std[] = {0.22590347483426, 0.22120921437787, 0.22103996251583};
+ float var[3];
+ var[0] = std[0]*std[0];
+ var[1] = std[1]*std[1];
+ var[2] = std[2]*std[2];
+
+ normalize_cpu(im.data, mean, var, 1, 3, im.w*im.h);
+
+ float *X = im.data;
+ time=clock();
+ float *predictions = network_predict(net, X);
+
+ layer l = net.layers[layer_num];
+ for(i = 0; i < l.c; ++i){
+ if(l.rolling_mean) printf("%f %f %f\n", l.rolling_mean[i], l.rolling_variance[i], l.scales[i]);
+ }
+ #ifdef GPU
+ cuda_pull_array(l.output_gpu, l.output, l.outputs);
+ #endif
+ for(i = 0; i < l.outputs; ++i){
+ printf("%f\n", l.output[i]);
+ }
+ /*
+
+ printf("\n\nWeights\n");
+ for(i = 0; i < l.n*l.size*l.size*l.c; ++i){
+ printf("%f\n", l.filters[i]);
+ }
+
+ printf("\n\nBiases\n");
+ for(i = 0; i < l.n; ++i){
+ printf("%f\n", l.biases[i]);
+ }
+ */
+
+ top_predictions(net, top, indexes);
+ printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
+ for(i = 0; i < top; ++i){
+ int index = indexes[i];
+ printf("%s: %f\n", names[index], predictions[index]);
+ }
+ free_image(im);
+ if (filename) break;
+ }
+}
+
+
void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename)
{
network net = parse_network_cfg(cfgfile);
@@ -649,6 +747,127 @@
}
+void threat_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
+{
+#ifdef OPENCV
+ float threat = 0;
+ float roll = .2;
+
+ printf("Classifier Demo\n");
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ set_batch_network(&net, 1);
+ list *options = read_data_cfg(datacfg);
+
+ srand(2222222);
+ CvCapture * cap;
+
+ if(filename){
+ cap = cvCaptureFromFile(filename);
+ }else{
+ cap = cvCaptureFromCAM(cam_index);
+ }
+
+ int top = option_find_int(options, "top", 1);
+
+ char *name_list = option_find_str(options, "names", 0);
+ char **names = get_labels(name_list);
+
+ int *indexes = calloc(top, sizeof(int));
+
+ if(!cap) error("Couldn't connect to webcam.\n");
+ //cvNamedWindow("Threat", CV_WINDOW_NORMAL);
+ //cvResizeWindow("Threat", 512, 512);
+ float fps = 0;
+ int i;
+
+ int count = 0;
+
+ while(1){
+ ++count;
+ struct timeval tval_before, tval_after, tval_result;
+ gettimeofday(&tval_before, NULL);
+
+ image in = get_image_from_stream(cap);
+ if(!in.data) break;
+ image in_s = resize_image(in, net.w, net.h);
+
+ image out = in;
+ int x1 = out.w / 20;
+ int y1 = out.h / 20;
+ int x2 = 2*x1;
+ int y2 = out.h - out.h/20;
+
+ int border = .01*out.h;
+ int h = y2 - y1 - 2*border;
+ int w = x2 - x1 - 2*border;
+
+ float *predictions = network_predict(net, in_s.data);
+ float curr_threat = predictions[0] * 0 + predictions[1] * .6 + predictions[2];
+ threat = roll * curr_threat + (1-roll) * threat;
+
+ draw_box_width(out, x2 + border, y1 + .02*h, x2 + .5 * w, y1 + .02*h + border, border, 0,0,0);
+ if(threat > .97) {
+ draw_box_width(out, x2 + .5 * w + border,
+ y1 + .02*h - 2*border,
+ x2 + .5 * w + 6*border,
+ y1 + .02*h + 3*border, 3*border, 1,0,0);
+ }
+ draw_box_width(out, x2 + .5 * w + border,
+ y1 + .02*h - 2*border,
+ x2 + .5 * w + 6*border,
+ y1 + .02*h + 3*border, .5*border, 0,0,0);
+ draw_box_width(out, x2 + border, y1 + .42*h, x2 + .5 * w, y1 + .42*h + border, border, 0,0,0);
+ if(threat > .57) {
+ draw_box_width(out, x2 + .5 * w + border,
+ y1 + .42*h - 2*border,
+ x2 + .5 * w + 6*border,
+ y1 + .42*h + 3*border, 3*border, 1,1,0);
+ }
+ draw_box_width(out, x2 + .5 * w + border,
+ y1 + .42*h - 2*border,
+ x2 + .5 * w + 6*border,
+ y1 + .42*h + 3*border, .5*border, 0,0,0);
+
+ draw_box_width(out, x1, y1, x2, y2, border, 0,0,0);
+ for(i = 0; i < threat * h ; ++i){
+ float ratio = (float) i / h;
+ float r = (ratio < .5) ? (2*(ratio)) : 1;
+ float g = (ratio < .5) ? 1 : 1 - 2*(ratio - .5);
+ draw_box_width(out, x1 + border, y2 - border - i, x2 - border, y2 - border - i, 1, r, g, 0);
+ }
+ top_predictions(net, top, indexes);
+ char buff[256];
+ sprintf(buff, "/home/pjreddie/tmp/threat_%06d", count);
+ save_image(out, buff);
+
+ printf("\033[2J");
+ printf("\033[1;1H");
+ printf("\nFPS:%.0f\n",fps);
+
+ for(i = 0; i < top; ++i){
+ int index = indexes[i];
+ printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
+ }
+
+ if(0){
+ show_image(out, "Threat");
+ cvWaitKey(10);
+ }
+ free_image(in_s);
+ free_image(in);
+
+ gettimeofday(&tval_after, NULL);
+ timersub(&tval_after, &tval_before, &tval_result);
+ float curr = 1000000.f/((long int)tval_result.tv_usec);
+ fps = .9*fps + .1*curr;
+ }
+#endif
+}
+
+
void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
{
#ifdef OPENCV
@@ -732,8 +951,10 @@
char *layer_s = (argc > 7) ? argv[7]: 0;
int layer = layer_s ? atoi(layer_s) : -1;
if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
+ else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s));
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear);
else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);
+ else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename);
else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights);
--
Gitblit v1.10.0