From a1af57d8d60b50e8188f36b7f74752c8cc124177 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Thu, 15 Feb 2018 12:43:25 +0000
Subject: [PATCH] Added C implementation of calculation mAP (mean average precision) using Darknet
---
src/detector.c | 284 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 files changed, 284 insertions(+), 0 deletions(-)
diff --git a/src/detector.c b/src/detector.c
index 4e22055..3111c19 100644
--- a/src/detector.c
+++ b/src/detector.c
@@ -315,6 +315,8 @@
float thresh = .005;
float nms = .45;
+ int detection_count = 0;
+
int nthreads = 4;
image *val = calloc(nthreads, sizeof(image));
image *val_resized = calloc(nthreads, sizeof(image));
@@ -356,6 +358,15 @@
int h = val[t].h;
get_region_boxes(l, w, h, thresh, probs, boxes, 0, map);
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
+
+ int x, y;
+ for (x = 0; x < (l.w*l.h*l.n); ++x) {
+ for (y = 0; y < classes; ++y)
+ {
+ if (probs[x][y]) ++detection_count;
+ }
+ }
+
if (coco){
print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
} else if (imagenet){
@@ -376,6 +387,7 @@
fprintf(fp, "\n]\n");
fclose(fp);
}
+ printf("\n detection_count = %d \n", detection_count);
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
@@ -409,6 +421,8 @@
float iou_thresh = .5;
float nms = .4;
+ int detection_count = 0, truth_count = 0;
+
int total = 0;
int correct = 0;
int proposals = 0;
@@ -432,6 +446,7 @@
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
+ truth_count += num_labels;
for(k = 0; k < l.w*l.h*l.n; ++k){
if(probs[k][0] > thresh){
++proposals;
@@ -458,6 +473,274 @@
free_image(orig);
free_image(sized);
}
+ printf("\n truth_count = %d \n", truth_count);
+}
+
+typedef struct {
+ box b;
+ float p;
+ int class_id;
+ int image_index;
+ int truth_flag;
+ int unique_truth_index;
+} box_prob;
+
+int detections_comparator(const void *pa, const void *pb)
+{
+ box_prob a = *(box_prob *)pa;
+ box_prob b = *(box_prob *)pb;
+ float diff = a.p - b.p;
+ if (diff < 0) return 1;
+ else if (diff > 0) return -1;
+ return 0;
+}
+
+void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile)
+{
+ int j;
+ list *options = read_data_cfg(datacfg);
+ char *valid_images = option_find_str(options, "valid", "data/train.list");
+ char *name_list = option_find_str(options, "names", "data/names.list");
+ //char *prefix = option_find_str(options, "results", "results");
+ char **names = get_labels(name_list);
+ char *mapf = option_find_str(options, "map", 0);
+ int *map = 0;
+ if (mapf) map = read_map(mapf);
+
+ network net = parse_network_cfg_custom(cfgfile, 1);
+ if (weightfile) {
+ load_weights(&net, weightfile);
+ }
+ set_batch_network(&net, 1);
+ fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+ srand(time(0));
+
+ char *base = "comp4_det_test_";
+ list *plist = get_paths(valid_images);
+ char **paths = (char **)list_to_array(plist);
+
+ layer l = net.layers[net.n - 1];
+ int classes = l.classes;
+
+ box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+ float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+ for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
+
+ int m = plist->size;
+ int i = 0;
+ int t;
+
+ const float thresh = .005;
+ const float nms = .45;
+ const float iou_thresh = 0.5;
+
+ int nthreads = 4;
+ image *val = calloc(nthreads, sizeof(image));
+ image *val_resized = calloc(nthreads, sizeof(image));
+ image *buf = calloc(nthreads, sizeof(image));
+ image *buf_resized = calloc(nthreads, sizeof(image));
+ pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
+
+ load_args args = { 0 };
+ args.w = net.w;
+ args.h = net.h;
+ args.type = IMAGE_DATA;
+
+ box_prob *detections = calloc(1, sizeof(box_prob));
+ int detections_count = 0;
+ int unique_truth_index = 0;
+
+ int *truth_classes_count = calloc(classes, sizeof(int));
+
+ for (t = 0; t < nthreads; ++t) {
+ args.path = paths[i + t];
+ args.im = &buf[t];
+ args.resized = &buf_resized[t];
+ thr[t] = load_data_in_thread(args);
+ }
+ time_t start = time(0);
+ for (i = nthreads; i < m + nthreads; i += nthreads) {
+ fprintf(stderr, "%d\n", i);
+ for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
+ pthread_join(thr[t], 0);
+ val[t] = buf[t];
+ val_resized[t] = buf_resized[t];
+ }
+ for (t = 0; t < nthreads && i + t < m; ++t) {
+ args.path = paths[i + t];
+ args.im = &buf[t];
+ args.resized = &buf_resized[t];
+ thr[t] = load_data_in_thread(args);
+ }
+ for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
+ const int image_index = i + t - nthreads;
+ char *path = paths[i + t - nthreads];
+ char *id = basecfg(path);
+ float *X = val_resized[t].data;
+ network_predict(net, X);
+ get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
+ if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
+
+ char labelpath[4096];
+ find_replace(path, "images", "labels", labelpath);
+ find_replace(labelpath, "JPEGImages", "labels", labelpath);
+ find_replace(labelpath, ".jpg", ".txt", labelpath);
+ find_replace(labelpath, ".JPEG", ".txt", labelpath);
+ find_replace(labelpath, ".png", ".txt", labelpath);
+ int num_labels = 0;
+ box_label *truth = read_boxes(labelpath, &num_labels);
+ int i, j;
+ for (j = 0; j < num_labels; ++j) {
+ truth_classes_count[truth[j].id]++;
+ }
+
+ for (i = 0; i < (l.w*l.h*l.n); ++i) {
+
+ int class_id;
+ for (class_id = 0; class_id < classes; ++class_id) {
+ float prob = probs[i][class_id];
+ if (prob > 0) {
+ detections_count++;
+ detections = realloc(detections, detections_count * sizeof(box_prob));
+ detections[detections_count - 1].b = boxes[i];
+ detections[detections_count - 1].p = prob;
+ detections[detections_count - 1].image_index = image_index;
+ detections[detections_count - 1].class_id = class_id;
+
+ int truth_index = -1;
+ float max_iou = 0;
+ for (j = 0; j < num_labels; ++j)
+ {
+ box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
+ //printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n",
+ // box_iou(boxes[i], t), prob, class_id, truth[j].id);
+ float current_iou = box_iou(boxes[i], t);
+ if (current_iou > iou_thresh && class_id == truth[j].id) {
+ if (current_iou > max_iou) {
+ current_iou = max_iou;
+ truth_index = unique_truth_index + j;
+ }
+ }
+ }
+ // best IoU
+ if (truth_index > -1) {
+ detections[detections_count - 1].truth_flag = 1;
+ detections[detections_count - 1].unique_truth_index = truth_index;
+ }
+ }
+ }
+ }
+
+ unique_truth_index += num_labels;
+
+ free(id);
+ free_image(val[t]);
+ free_image(val_resized[t]);
+ }
+ }
+
+
+ // SORT(detections)
+ qsort(detections, detections_count, sizeof(box_prob), detections_comparator);
+
+ typedef struct {
+ double precision;
+ double recall;
+ int tp, fp, fn;
+ } pr_t;
+
+ // for PR-curve
+ pr_t **pr = calloc(classes, sizeof(pr_t*));
+ for (i = 0; i < classes; ++i) {
+ pr[i] = calloc(detections_count, sizeof(pr_t));
+ }
+ printf("detections_count = %d, unique_truth_index = %d \n", detections_count, unique_truth_index);
+
+
+ int *truth_flags = calloc(unique_truth_index, sizeof(int));
+
+ int rank;
+ for (rank = 0; rank < detections_count; ++rank) {
+ if(rank % 100 == 0)
+ printf(" rank = %d of ranks = %d \r", rank, detections_count);
+
+ if (rank > 0) {
+ int class_id;
+ for (class_id = 0; class_id < classes; ++class_id) {
+ pr[class_id][rank].tp = pr[class_id][rank - 1].tp;
+ pr[class_id][rank].fp = pr[class_id][rank - 1].fp;
+ }
+ }
+
+ box_prob d = detections[rank];
+ // if (detected && isn't detected before)
+ if (d.truth_flag == 1) {
+ if (truth_flags[d.unique_truth_index] == 0)
+ {
+ truth_flags[d.unique_truth_index] = 1;
+ pr[d.class_id][rank].tp++; // true-positive
+ }
+ }
+ else {
+ pr[d.class_id][rank].fp++; // false-positive
+ }
+
+
+ for (i = 0; i < classes; ++i)
+ {
+ const int tp = pr[i][rank].tp;
+ const int fp = pr[i][rank].fp;
+ const int fn = truth_classes_count[i] - tp; // false-negative = objects - true-positive
+ pr[i][rank].fn = fn;
+
+ if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp);
+ else pr[i][rank].precision = 0;
+
+ if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn);
+ else pr[i][rank].recall = 0;
+ }
+ }
+
+ free(truth_flags);
+
+
+ double mean_average_precision = 0;
+
+ for (i = 0; i < classes; ++i) {
+ double avg_precision = 0;
+ int point;
+ for (point = 0; point < 11; ++point) {
+ double cur_recall = point * 0.1;
+ double cur_precision = 0;
+ for (rank = 0; rank < detections_count; ++rank)
+ {
+ if (pr[i][rank].recall >= cur_recall) { // > or >=
+ if (pr[i][rank].precision > cur_precision) {
+ cur_precision = pr[i][rank].precision;
+ }
+ }
+ }
+ //printf("point = %d, cur_recall = %.4f, cur_precision = %.4f \n", point, cur_recall, cur_precision);
+
+ avg_precision += cur_precision;
+ }
+ avg_precision = avg_precision / 11;
+ printf("class = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100);
+ mean_average_precision += avg_precision;
+ }
+
+ mean_average_precision = mean_average_precision / classes;
+ printf("\n mean average precision (mAP) = %f, or %2.2f %% \n", mean_average_precision, mean_average_precision*100);
+
+
+ for (i = 0; i < classes; ++i) {
+ free(pr[i]);
+ }
+ free(pr);
+ free(detections);
+ free(truth_classes_count);
+
+ fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh)
@@ -565,6 +848,7 @@
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
+ else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights);
else if(0==strcmp(argv[2], "demo")) {
list *options = read_data_cfg(datacfg);
int classes = option_find_int(options, "classes", 20);
--
Gitblit v1.10.0