From a284a7da8d1facbf984a22302665a2a50295a687 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Wed, 08 Aug 2018 16:08:58 +0000
Subject: [PATCH] Try to use avx_hs() - slow and requires alignment 4096 bits < (l.size*l.size*l.c) May be faster only from 8192 bits and more.
---
src/network.c | 2
src/image.c | 31
src/convolutional_layer.c | 2
src/gemm.c | 1813 ++++++++++++++++++++++++++++++---------------------------
4 files changed, 978 insertions(+), 870 deletions(-)
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index bbc4807..0bde97a 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -684,6 +684,8 @@
// transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits)
{
size_t ldb_align = 256;// 8;
+ if (k > 4096)ldb_align = 4096;
+
size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
size_t t_intput_size = new_ldb * n;
size_t t_bit_input_size = t_intput_size / 8;// +1;
diff --git a/src/gemm.c b/src/gemm.c
index ee7fa15..63163a5 100644
--- a/src/gemm.c
+++ b/src/gemm.c
@@ -1,857 +1,956 @@
-#include "gemm.h"
-#include "utils.h"
-#include "cuda.h"
-#include <stdlib.h>
-#include <stdio.h>
-#include <math.h>
-
-void gemm_bin(int M, int N, int K, float ALPHA,
- char *A, int lda,
- float *B, int ldb,
- float *C, int ldc)
-{
- int i,j,k;
- for(i = 0; i < M; ++i){
- for(k = 0; k < K; ++k){
- char A_PART = A[i*lda+k];
- if(A_PART){
- for(j = 0; j < N; ++j){
- C[i*ldc+j] += B[k*ldb+j];
- }
- } else {
- for(j = 0; j < N; ++j){
- C[i*ldc+j] -= B[k*ldb+j];
- }
- }
- }
- }
-}
-
-float *random_matrix(int rows, int cols)
-{
- int i;
- float *m = calloc(rows*cols, sizeof(float));
- for(i = 0; i < rows*cols; ++i){
- m[i] = (float)rand()/RAND_MAX;
- }
- return m;
-}
-
-void time_random_matrix(int TA, int TB, int m, int k, int n)
-{
- float *a;
- if(!TA) a = random_matrix(m,k);
- else a = random_matrix(k,m);
- int lda = (!TA)?k:m;
- float *b;
- if(!TB) b = random_matrix(k,n);
- else b = random_matrix(n,k);
- int ldb = (!TB)?n:k;
-
- float *c = random_matrix(m,n);
- int i;
- clock_t start = clock(), end;
- for(i = 0; i<10; ++i){
- gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
- }
- end = clock();
- printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
- free(a);
- free(b);
- free(c);
-}
-
-
-void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
- float *A, int lda,
- float *B, int ldb,
- float BETA,
- float *C, int ldc)
-{
- gemm_cpu( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
-}
-
-
-//--------------------------------------------
-// XNOR bitwise GEMM for binary neural network
-//--------------------------------------------
-
-#include <stdint.h>
-
-static inline unsigned char xnor(unsigned char a, unsigned char b) {
- //return a == b;
- return !(a^b);
-}
-
-// INT-32
-static inline uint32_t get_bit_int32(uint32_t const*const src, size_t index) {
- size_t src_i = index / 32;
- int src_shift = index % 32;
- unsigned char val = (src[src_i] & (1 << src_shift)) > 0;
- return val;
-}
-
-static inline uint32_t xnor_int32(uint32_t a, uint32_t b) {
- return ~(a^b);
-}
-
-static inline uint64_t xnor_int64(uint64_t a, uint64_t b) {
- return ~(a^b);
-}
-
-
-static inline uint32_t fill_bit_int32(char src) {
- if (src == 0) return 0x00000000;
- else return 0xFFFFFFFF;
-}
-
-static inline uint64_t fill_bit_int64(char src) {
- if (src == 0) return 0x0000000000000000;
- else return 0xFFFFFFFFFFFFFFFF;
-}
-
-void binary_int32_printf(uint32_t src) {
- int i;
- for (i = 0; i < 32; ++i) {
- if (src & 1) printf("1");
- else printf("0");
- src = src >> 1;
- }
- printf("\n");
-}
-
-void binary_int64_printf(uint64_t src) {
- int i;
- for (i = 0; i < 64; ++i) {
- if (src & 1) printf("1");
- else printf("0");
- src = src >> 1;
- }
- printf("\n");
-}
-
-/*
-void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
- unsigned char *A, int lda,
- unsigned char *B, int ldb,
- float *C, int ldc, float *mean_arr)
-{
- int *count_arr = calloc(M*N, sizeof(int));
-
- int i, j, k;
- for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
- for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216]
- char a_bit = get_bit(A, i*lda + k);
-
- for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
- char b_bit = get_bit(B, k*ldb + j);
- count_arr[i*ldc + j] += xnor(a_bit, b_bit);
- }
- }
- }
-
- for (i = 0; i < M; ++i) {
- float mean_val = mean_arr[i];
- for (j = 0; j < N; ++j) {
- C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
- }
- }
- free(count_arr);
-}
-*/
-
-/*
-void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
- unsigned char *A, int lda,
- unsigned char *B, int ldb,
- float *C, int ldc, float *mean_arr)
-{
- int *count_arr = calloc(M*N, sizeof(int));
-
- int i, j, k;
- for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
- for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
- for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216]
- char a_bit = get_bit(A, i*lda + k);
- char b_bit = get_bit(B, j*ldb + k);
- count_arr[i*ldc + j] += xnor(a_bit, b_bit);
- }
- }
- }
-
- for (i = 0; i < M; ++i) {
- float mean_val = mean_arr[i];
- for (j = 0; j < N; ++j) {
- C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
- }
- }
- free(count_arr);
-}
-*/
-
-/*
-void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
- unsigned char *A, int lda,
- unsigned char *B, int ldb,
- float *C, int ldc, float *mean_arr)
-{
- int *count_arr = calloc(M*N, sizeof(int));
-
- int i, j, k, h;
-
-#pragma omp parallel for
- for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
- for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216]
- const char a_bit = get_bit(A, i*lda + k);
- uint64_t a_bit64 = fill_bit_int64(a_bit);
- int k_ldb = k*ldb;
-
- for (j = 0; j < N; j += 64) { // out_h*out_w - one channel output size [169 - 173056]
- if ((N - j > 64) && (k_ldb % 8 == 0)) {
- uint64_t b_bit64 = *((uint64_t *)(B + (k_ldb + j) / 8));
- uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
- //printf("\n %d \n",__builtin_popcountll(c_bit64)); // gcc
- printf("\n %d \n", __popcnt64(c_bit64)); // msvs
-
- int h;
- for (h = 0; h < 64; ++h)
- if ((c_bit64 >> h) & 1) count_arr[i*ldc + j + h] += 1;
-
- //binary_int64_printf(a_bit64);
- //binary_int64_printf(b_bit64);
- //binary_int64_printf(c_bit64);
- }
- else {
- for (; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
- char b_bit = get_bit(B, k_ldb + j);
- if (xnor(a_bit, b_bit)) count_arr[i*ldc + j] += 1;
- }
- }
-
- }
- }
- }
-
- if (mean_arr) {
- //int K_2 = K / 2;
- for (i = 0; i < M; ++i) {
- float mean_val = mean_arr[i];
- //float mean_val2 = 2 * mean_val;
- for (j = 0; j < N; ++j) {
- C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
- //C[i*ldc + j] = (count_arr[i*ldc + j] - K_2) *mean_val2;
- }
- }
- }
- else {
- for (i = 0; i < M; ++i) {
- for (j = 0; j < N; ++j) {
- C[i*ldc + j] = count_arr[i*ldc + j] - K / 2;
- }
- }
- }
-
- free(count_arr);
-
- //getchar();
-}
-*/
-
-
-/*
-void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
- unsigned char *A, int lda,
- unsigned char *B, int ldb,
- float *C, int ldc, float *mean_arr)
-{
- int i, j, k, h;
-
-#pragma omp parallel for
- for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
- float mean_val = mean_arr[i];
-
- for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
- int count = 0;
-
- for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
- uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8));
- uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
- uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
-
-#ifdef WIN32
- int tmp_count = __popcnt64(c_bit64);
-#else
- int tmp_count = __builtin_popcountll(c_bit64);
-#endif
-
- if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits
- count += tmp_count;
- //binary_int64_printf(c_bit64);
- //printf(", count = %d \n\n", tmp_count);
- }
-
- C[i*ldc + j] = (2 * count - K) * mean_val;
- }
- }
-}
-*/
-
-//----------------------------
-
-
-#if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64)
-
-#define OSXSAVEFlag (1UL<<27)
-#define AVXFlag ((1UL<<28)|OSXSAVEFlag)
-#define FMAFlag ((1UL<<12)|AVXFlag|OSXSAVEFlag)
-#define CLMULFlag ((1UL<< 1)|AVXFlag|OSXSAVEFlag)
-#define VAESFlag ((1UL<<25)|AVXFlag|OSXSAVEFlag)
-
-#ifdef _WIN64
-#include <intrin.h>
-#include <ammintrin.h>
-#include <immintrin.h>
-#include <smmintrin.h>
-
-#else // Linux GCC/Clang
-#include <x86intrin.h>
-#include <ammintrin.h>
-#include <immintrin.h>
-#include <smmintrin.h>
-#include <cpuid.h>
-
-void asm_cpuid(uint32_t* abcd, uint32_t eax)
-{
- uint32_t ebx = 0, edx = 0, ecx = 0;
-
- // EBX is saved to EDI and later restored
- __asm__("movl %%ebx, %%edi;"
- "cpuid;"
- "xchgl %%ebx, %%edi;"
- : "=D"(ebx),
- "+a"(eax), "+c"(ecx), "=d"(edx));
-
- abcd[0] = eax;
- abcd[1] = ebx;
- abcd[2] = ecx;
- abcd[3] = edx;
-}
-
-#endif
-
-int simd_detect_x86(unsigned int idFeature)
-{
- uint32_t regs[4]; // EAX, EBX, ECX, EDX;
-#ifdef _WIN32
- __cpuid(regs, 0);
- if (regs[0] > 1U) __cpuid(regs, 1);
-#else
- __get_cpuid(0, ®s[0], ®s[1], ®s[2], ®s[3]);
- if(regs[0] > 1U) __get_cpuid(1, ®s[0], ®s[1], ®s[2], ®s[3]);
-#endif
-
- if ((regs[2] & idFeature) != idFeature)
- return 0;
- return 1;
-}
-
-int is_fma_avx() {
- static int result = -1;
- if (result == -1) {
- result = simd_detect_x86(AVXFlag);
- if (result == 1) printf(" Used AVX \n");
- else printf(" Not used AVX \n");
- }
- return result;
-}
-
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide
-void gemm_nn(int M, int N, int K, float ALPHA,
- float *A, int lda,
- float *B, int ldb,
- float *C, int ldc)
-{
- int i, j, k;
- if (is_fma_avx() == 1) { // AVX
- for (i = 0; i < M; ++i) {
- for (k = 0; k < K; ++k) {
- float A_PART = ALPHA*A[i*lda + k];
- __m256 a256, b256, c256, result256; // AVX
- a256 = _mm256_set1_ps(A_PART);
- for (j = 0; j < N - 8; j += 8) {
- b256 = _mm256_loadu_ps(&B[k*ldb + j]);
- c256 = _mm256_loadu_ps(&C[i*ldc + j]);
- // FMA - Intel Haswell (2013), AMD Piledriver (2012)
- //result256 = _mm256_fmadd_ps(a256, b256, c256);
- result256 = _mm256_mul_ps(a256, b256);
- result256 = _mm256_add_ps(result256, c256);
- _mm256_storeu_ps(&C[i*ldc + j], result256);
- }
-
- int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8;
- for (j = prev_end; j < N; ++j)
- C[i*ldc + j] += A_PART*B[k*ldb + j];
- }
- }
- }
- else {
- for (i = 0; i < M; ++i) {
- for (k = 0; k < K; ++k) {
- register float A_PART = ALPHA*A[i*lda + k];
- for (j = 0; j < N; ++j) {
- C[i*ldc + j] += A_PART*B[k*ldb + j];
- }
- /* // SSE
- __m128 a128, b128, c128, result128; // SSE
- a128 = _mm_set1_ps(A_PART);
- for (j = 0; j < N - 4; j += 4) {
- b128 = _mm_loadu_ps(&B[k*ldb + j]);
- c128 = _mm_loadu_ps(&C[i*ldc + j]);
- //result128 = _mm_fmadd_ps(a128, b128, c128);
- result128 = _mm_mul_ps(a128, b128);
- result128 = _mm_add_ps(result128, c128);
- _mm_storeu_ps(&C[i*ldc + j], result128);
- }
-
- int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4;
- for (j = prev_end; j < N; ++j){
- C[i*ldc + j] += A_PART*B[k*ldb + j];
- }
- */
- }
- }
- }
-}
-
-
-// http://graphics.stanford.edu/~seander/bithacks.html
-// https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register
-
-// 2 x faster than popcnt: https://arxiv.org/pdf/1611.07612.pdf
-
-static inline int popcnt128(__m128i n) {
- const __m128i n_hi = _mm_unpackhi_epi64(n, n);
-#ifdef _MSC_VER
- return __popcnt64(_mm_cvtsi128_si64(n)) + __popcnt64(_mm_cvtsi128_si64(n_hi));
-#else
- return __popcntq(_mm_cvtsi128_si64(n)) + __popcntq(_mm_cvtsi128_si64(n_hi));
-#endif
-}
-
-static inline int popcnt256(__m256i n) {
- return popcnt128(_mm256_extractf128_si256(n, 0)) + popcnt128(_mm256_extractf128_si256(n, 1));
-}
-
-void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
- unsigned char *A, int lda,
- unsigned char *B, int ldb,
- float *C, int ldc, float *mean_arr)
-{
- __m256i all_1 = _mm256_set1_epi8(255);
- int i, j, k, h;
-
- #pragma omp parallel for
- for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
- float mean_val = mean_arr[i];
-
- for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
- int count = 0;
- const int bit_step = 256;
-
- for (k = 0; k < K; k += bit_step) { // l.size*l.size*l.c - one filter size [27 - 9216]
-
- //__m128i a_bit128 = _mm_loadu_si128((__m128i *)(A + (i*lda + k) / 8));
- //__m128i b_bit128 = _mm_loadu_si128((__m128i *)(B + (j*ldb + k) / 8));
- //__m128i xor128 = _mm_xor_si128(a_bit128, b_bit128);
- //__m128i c_bit128 = _mm_andnot_si128(xor128, all_1);
- //int tmp_count = popcnt128(c_bit128);
-
- __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8));
- __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8));
- __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);
- __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); //we can do NOT for wegihts once and do not do this NOT
- int tmp_count = popcnt256(c_bit256);
-
- if (K - k < bit_step) tmp_count = tmp_count - (bit_step - (K - k)); // remove extra bits
- count += tmp_count;
- //binary_int64_printf(c_bit64);
- //printf(", count = %d \n\n", tmp_count);
- }
-
- C[i*ldc + j] = (2 * count - K) * mean_val;
- }
- }
-}
-
-
-void float_to_bit(float *src, unsigned char *dst, size_t size)
-{
- size_t dst_size = size / 8 + 1;
- memset(dst, 0, dst_size);
-
- size_t i;
- __m128i all128_0 = _mm_set_epi32(0, 0, 0, 0);
- __m256 all256_0 = _mm256_set1_ps(0);
- __m256i bits_asc = _mm256_set_epi32(1, 2, 4, 8, 16, 32, 64, 128);
- //for(i = 0; i < 8; ++i) bits_asc.m256i_i32[i] = 1 << i;
-
- for (i = 0; i < size; i+=8)
- {
- __m256 src256 = _mm256_loadu_ps((__m256i *)(&src[i])); // load 256 bits
- __m256 result256 = _mm256_cmp_ps(src256, all256_0, _CMP_GT_OS); // compare dst[i] = (float[i] > 0)
-
- __m256i bits256 = _mm256_castps_si256(result256); // floats to ints32
- __m256i and256 = _mm256_and_si256(bits256, bits_asc); // bitwise and
-
- // sum all elements from single and256
- __m128i tmp128 = _mm_hadd_epi32(_mm256_extractf128_si256(and256, 0), _mm256_extractf128_si256(and256, 1));
- tmp128 = _mm_hadd_epi32(tmp128, all128_0);
- tmp128 = _mm_hadd_epi32(tmp128, all128_0);
-
- dst[i / 8] = tmp128.m128i_i32[0];
- }
- // int _mm256_movemask_epi8 (__m256i a)
-}
-
-#else
-
-void gemm_nn(int M, int N, int K, float ALPHA,
- float *A, int lda,
- float *B, int ldb,
- float *C, int ldc)
-{
- int i, j, k;
- for (i = 0; i < M; ++i) {
- for (k = 0; k < K; ++k) {
- register float A_PART = ALPHA*A[i*lda + k];
- for (j = 0; j < N; ++j) {
- C[i*ldc + j] += A_PART*B[k*ldb + j];
- }
- }
- }
-}
-
-void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
- unsigned char *A, int lda,
- unsigned char *B, int ldb,
- float *C, int ldc, float *mean_arr)
-{
- int i, j, k, h;
-
-#pragma omp parallel for
- for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
- float mean_val = mean_arr[i];
-
- for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
- int count = 0;
-
- for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
- uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8));
- uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
- uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
-
-#ifdef WIN32
- int tmp_count = __popcnt64(c_bit64);
-#else
- int tmp_count = __builtin_popcountll(c_bit64);
-#endif
-
- if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits
- count += tmp_count;
- //binary_int64_printf(c_bit64);
- //printf(", count = %d \n\n", tmp_count);
- }
-
- C[i*ldc + j] = (2 * count - K) * mean_val;
- }
- }
-}
-
-void float_to_bit(float *src, unsigned char *dst, size_t size)
-{
- size_t dst_size = size / 8 + 1;
- memset(dst, 0, dst_size);
-
- size_t i;
- char *byte_arr = calloc(size, sizeof(char));
- for (i = 0; i < size; ++i) {
- if (src[i] > 0) byte_arr[i] = 1;
- }
-
- //for (i = 0; i < size; ++i) {
- // dst[i / 8] |= byte_arr[i] << (i % 8);
- //}
-
- for (i = 0; i < size; i += 8) {
- char dst_tmp = 0;
- dst_tmp |= byte_arr[i + 0] << 0;
- dst_tmp |= byte_arr[i + 1] << 1;
- dst_tmp |= byte_arr[i + 2] << 2;
- dst_tmp |= byte_arr[i + 3] << 3;
- dst_tmp |= byte_arr[i + 4] << 4;
- dst_tmp |= byte_arr[i + 5] << 5;
- dst_tmp |= byte_arr[i + 6] << 6;
- dst_tmp |= byte_arr[i + 7] << 7;
- dst[i / 8] = dst_tmp;
- }
- free(byte_arr);
-}
-#endif // __x86_64
-
-void gemm_nt(int M, int N, int K, float ALPHA,
- float *A, int lda,
- float *B, int ldb,
- float *C, int ldc)
-{
- int i,j,k;
- for(i = 0; i < M; ++i){
- for(j = 0; j < N; ++j){
- register float sum = 0;
- for(k = 0; k < K; ++k){
- sum += ALPHA*A[i*lda+k]*B[j*ldb + k];
- }
- C[i*ldc+j] += sum;
- }
- }
-}
-
-void gemm_tn(int M, int N, int K, float ALPHA,
- float *A, int lda,
- float *B, int ldb,
- float *C, int ldc)
-{
- int i,j,k;
- for(i = 0; i < M; ++i){
- for(k = 0; k < K; ++k){
- register float A_PART = ALPHA*A[k*lda+i];
- for(j = 0; j < N; ++j){
- C[i*ldc+j] += A_PART*B[k*ldb+j];
- }
- }
- }
-}
-
-void gemm_tt(int M, int N, int K, float ALPHA,
- float *A, int lda,
- float *B, int ldb,
- float *C, int ldc)
-{
- int i,j,k;
- for(i = 0; i < M; ++i){
- for(j = 0; j < N; ++j){
- register float sum = 0;
- for(k = 0; k < K; ++k){
- sum += ALPHA*A[i+k*lda]*B[k+j*ldb];
- }
- C[i*ldc+j] += sum;
- }
- }
-}
-
-
-void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,
- float *A, int lda,
- float *B, int ldb,
- float BETA,
- float *C, int ldc)
-{
- //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc);
- if (BETA != 1){
- int i, j;
- for(i = 0; i < M; ++i){
- for(j = 0; j < N; ++j){
- C[i*ldc + j] *= BETA;
- }
- }
- }
-
- int t;
- #pragma omp parallel for
- for (t = 0; t < M; ++t) {
- if (!TA && !TB)
- gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
- else if (TA && !TB)
- gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
- else if (!TA && TB)
- gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
- else
- gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
- }
-}
-
-#ifdef GPU
-
-#include <math.h>
-
-void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
- float *A_gpu, int lda,
- float *B_gpu, int ldb,
- float BETA,
- float *C_gpu, int ldc)
-{
- cublasHandle_t handle = blas_handle();
- cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream());
- cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N),
- (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc);
- check_error(status);
-}
-
-void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
- float *A, int lda,
- float *B, int ldb,
- float BETA,
- float *C, int ldc)
-{
- float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M));
- float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K));
- float *C_gpu = cuda_make_array(C, ldc*M);
-
- gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
-
- cuda_pull_array(C_gpu, C, ldc*M);
- cuda_free(A_gpu);
- cuda_free(B_gpu);
- cuda_free(C_gpu);
-}
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <time.h>
-
-void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
-{
- float *a;
- if(!TA) a = random_matrix(m,k);
- else a = random_matrix(k,m);
- int lda = (!TA)?k:m;
- float *b;
- if(!TB) b = random_matrix(k,n);
- else b = random_matrix(n,k);
- int ldb = (!TB)?n:k;
-
- float *c = random_matrix(m,n);
- int i;
- clock_t start = clock(), end;
- for(i = 0; i<32; ++i){
- gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
- }
- end = clock();
- printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
- free(a);
- free(b);
- free(c);
-}
-
-void time_ongpu(int TA, int TB, int m, int k, int n)
-{
- int iter = 10;
- float *a = random_matrix(m,k);
- float *b = random_matrix(k,n);
-
- int lda = (!TA)?k:m;
- int ldb = (!TB)?n:k;
-
- float *c = random_matrix(m,n);
-
- float *a_cl = cuda_make_array(a, m*k);
- float *b_cl = cuda_make_array(b, k*n);
- float *c_cl = cuda_make_array(c, m*n);
-
- int i;
- clock_t start = clock(), end;
- for(i = 0; i<iter; ++i){
- gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
- cudaThreadSynchronize();
- }
- double flop = ((double)m)*n*(2.*k + 2.)*iter;
- double gflop = flop/pow(10., 9);
- end = clock();
- double seconds = sec(end-start);
- printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds);
- cuda_free(a_cl);
- cuda_free(b_cl);
- cuda_free(c_cl);
- free(a);
- free(b);
- free(c);
-}
-
-
-void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
-{
- srand(0);
- float *a;
- if(!TA) a = random_matrix(m,k);
- else a = random_matrix(k,m);
- int lda = (!TA)?k:m;
- float *b;
- if(!TB) b = random_matrix(k,n);
- else b = random_matrix(n,k);
- int ldb = (!TB)?n:k;
-
- float *c = random_matrix(m,n);
- float *c_gpu = random_matrix(m,n);
- memset(c, 0, m*n*sizeof(float));
- memset(c_gpu, 0, m*n*sizeof(float));
- int i;
- //pm(m,k,b);
- gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
- //printf("GPU\n");
- //pm(m, n, c_gpu);
-
- gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
- //printf("\n\nCPU\n");
- //pm(m, n, c);
- double sse = 0;
- for(i = 0; i < m*n; ++i) {
- //printf("%f %f\n", c[i], c_gpu[i]);
- sse += pow(c[i]-c_gpu[i], 2);
- }
- printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g SSE\n",m,k,k,n, TA, TB, sse/(m*n));
- free(a);
- free(b);
- free(c);
- free(c_gpu);
-}
-
-int test_gpu_blas()
-{
- /*
- test_gpu_accuracy(0,0,10,576,75);
-
- test_gpu_accuracy(0,0,17,10,10);
- test_gpu_accuracy(1,0,17,10,10);
- test_gpu_accuracy(0,1,17,10,10);
- test_gpu_accuracy(1,1,17,10,10);
-
- test_gpu_accuracy(0,0,1000,10,100);
- test_gpu_accuracy(1,0,1000,10,100);
- test_gpu_accuracy(0,1,1000,10,100);
- test_gpu_accuracy(1,1,1000,10,100);
-
- test_gpu_accuracy(0,0,10,10,10);
-
- time_ongpu(0,0,64,2916,363);
- time_ongpu(0,0,64,2916,363);
- time_ongpu(0,0,64,2916,363);
- time_ongpu(0,0,192,729,1600);
- time_ongpu(0,0,384,196,1728);
- time_ongpu(0,0,256,196,3456);
- time_ongpu(0,0,256,196,2304);
- time_ongpu(0,0,128,4096,12544);
- time_ongpu(0,0,128,4096,4096);
- */
- time_ongpu(0,0,64,75,12544);
- time_ongpu(0,0,64,75,12544);
- time_ongpu(0,0,64,75,12544);
- time_ongpu(0,0,64,576,12544);
- time_ongpu(0,0,256,2304,784);
- time_ongpu(1,1,2304,256,784);
- time_ongpu(0,0,512,4608,196);
- time_ongpu(1,1,4608,512,196);
-
- return 0;
-}
-#endif
-
+#include "gemm.h"
+#include "utils.h"
+#include "cuda.h"
+#include <stdlib.h>
+#include <stdio.h>
+#include <math.h>
+
+void gemm_bin(int M, int N, int K, float ALPHA,
+ char *A, int lda,
+ float *B, int ldb,
+ float *C, int ldc)
+{
+ int i,j,k;
+ for(i = 0; i < M; ++i){
+ for(k = 0; k < K; ++k){
+ char A_PART = A[i*lda+k];
+ if(A_PART){
+ for(j = 0; j < N; ++j){
+ C[i*ldc+j] += B[k*ldb+j];
+ }
+ } else {
+ for(j = 0; j < N; ++j){
+ C[i*ldc+j] -= B[k*ldb+j];
+ }
+ }
+ }
+ }
+}
+
+float *random_matrix(int rows, int cols)
+{
+ int i;
+ float *m = calloc(rows*cols, sizeof(float));
+ for(i = 0; i < rows*cols; ++i){
+ m[i] = (float)rand()/RAND_MAX;
+ }
+ return m;
+}
+
+void time_random_matrix(int TA, int TB, int m, int k, int n)
+{
+ float *a;
+ if(!TA) a = random_matrix(m,k);
+ else a = random_matrix(k,m);
+ int lda = (!TA)?k:m;
+ float *b;
+ if(!TB) b = random_matrix(k,n);
+ else b = random_matrix(n,k);
+ int ldb = (!TB)?n:k;
+
+ float *c = random_matrix(m,n);
+ int i;
+ clock_t start = clock(), end;
+ for(i = 0; i<10; ++i){
+ gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
+ }
+ end = clock();
+ printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
+ free(a);
+ free(b);
+ free(c);
+}
+
+
+void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
+ float *A, int lda,
+ float *B, int ldb,
+ float BETA,
+ float *C, int ldc)
+{
+ gemm_cpu( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
+}
+
+
+//--------------------------------------------
+// XNOR bitwise GEMM for binary neural network
+//--------------------------------------------
+
+#include <stdint.h>
+
+static inline unsigned char xnor(unsigned char a, unsigned char b) {
+ //return a == b;
+ return !(a^b);
+}
+
+// INT-32
+static inline uint32_t get_bit_int32(uint32_t const*const src, size_t index) {
+ size_t src_i = index / 32;
+ int src_shift = index % 32;
+ unsigned char val = (src[src_i] & (1 << src_shift)) > 0;
+ return val;
+}
+
+static inline uint32_t xnor_int32(uint32_t a, uint32_t b) {
+ return ~(a^b);
+}
+
+static inline uint64_t xnor_int64(uint64_t a, uint64_t b) {
+ return ~(a^b);
+}
+
+
+static inline uint32_t fill_bit_int32(char src) {
+ if (src == 0) return 0x00000000;
+ else return 0xFFFFFFFF;
+}
+
+static inline uint64_t fill_bit_int64(char src) {
+ if (src == 0) return 0x0000000000000000;
+ else return 0xFFFFFFFFFFFFFFFF;
+}
+
+void binary_int32_printf(uint32_t src) {
+ int i;
+ for (i = 0; i < 32; ++i) {
+ if (src & 1) printf("1");
+ else printf("0");
+ src = src >> 1;
+ }
+ printf("\n");
+}
+
+void binary_int64_printf(uint64_t src) {
+ int i;
+ for (i = 0; i < 64; ++i) {
+ if (src & 1) printf("1");
+ else printf("0");
+ src = src >> 1;
+ }
+ printf("\n");
+}
+
+/*
+void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
+ unsigned char *A, int lda,
+ unsigned char *B, int ldb,
+ float *C, int ldc, float *mean_arr)
+{
+ int *count_arr = calloc(M*N, sizeof(int));
+
+ int i, j, k;
+ for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
+ for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216]
+ char a_bit = get_bit(A, i*lda + k);
+
+ for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+ char b_bit = get_bit(B, k*ldb + j);
+ count_arr[i*ldc + j] += xnor(a_bit, b_bit);
+ }
+ }
+ }
+
+ for (i = 0; i < M; ++i) {
+ float mean_val = mean_arr[i];
+ for (j = 0; j < N; ++j) {
+ C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
+ }
+ }
+ free(count_arr);
+}
+*/
+
+/*
+void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
+ unsigned char *A, int lda,
+ unsigned char *B, int ldb,
+ float *C, int ldc, float *mean_arr)
+{
+ int *count_arr = calloc(M*N, sizeof(int));
+
+ int i, j, k;
+ for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
+ for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+ for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216]
+ char a_bit = get_bit(A, i*lda + k);
+ char b_bit = get_bit(B, j*ldb + k);
+ count_arr[i*ldc + j] += xnor(a_bit, b_bit);
+ }
+ }
+ }
+
+ for (i = 0; i < M; ++i) {
+ float mean_val = mean_arr[i];
+ for (j = 0; j < N; ++j) {
+ C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
+ }
+ }
+ free(count_arr);
+}
+*/
+
+/*
+void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
+ unsigned char *A, int lda,
+ unsigned char *B, int ldb,
+ float *C, int ldc, float *mean_arr)
+{
+ int *count_arr = calloc(M*N, sizeof(int));
+
+ int i, j, k, h;
+
+#pragma omp parallel for
+ for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
+ for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216]
+ const char a_bit = get_bit(A, i*lda + k);
+ uint64_t a_bit64 = fill_bit_int64(a_bit);
+ int k_ldb = k*ldb;
+
+ for (j = 0; j < N; j += 64) { // out_h*out_w - one channel output size [169 - 173056]
+ if ((N - j > 64) && (k_ldb % 8 == 0)) {
+ uint64_t b_bit64 = *((uint64_t *)(B + (k_ldb + j) / 8));
+ uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
+ //printf("\n %d \n",__builtin_popcountll(c_bit64)); // gcc
+ printf("\n %d \n", __popcnt64(c_bit64)); // msvs
+
+ int h;
+ for (h = 0; h < 64; ++h)
+ if ((c_bit64 >> h) & 1) count_arr[i*ldc + j + h] += 1;
+
+ //binary_int64_printf(a_bit64);
+ //binary_int64_printf(b_bit64);
+ //binary_int64_printf(c_bit64);
+ }
+ else {
+ for (; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+ char b_bit = get_bit(B, k_ldb + j);
+ if (xnor(a_bit, b_bit)) count_arr[i*ldc + j] += 1;
+ }
+ }
+
+ }
+ }
+ }
+
+ if (mean_arr) {
+ //int K_2 = K / 2;
+ for (i = 0; i < M; ++i) {
+ float mean_val = mean_arr[i];
+ //float mean_val2 = 2 * mean_val;
+ for (j = 0; j < N; ++j) {
+ C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
+ //C[i*ldc + j] = (count_arr[i*ldc + j] - K_2) *mean_val2;
+ }
+ }
+ }
+ else {
+ for (i = 0; i < M; ++i) {
+ for (j = 0; j < N; ++j) {
+ C[i*ldc + j] = count_arr[i*ldc + j] - K / 2;
+ }
+ }
+ }
+
+ free(count_arr);
+
+ //getchar();
+}
+*/
+
+
+/*
+void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
+ unsigned char *A, int lda,
+ unsigned char *B, int ldb,
+ float *C, int ldc, float *mean_arr)
+{
+ int i, j, k, h;
+
+#pragma omp parallel for
+ for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
+ float mean_val = mean_arr[i];
+
+ for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+ int count = 0;
+
+ for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
+ uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8));
+ uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
+ uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
+
+#ifdef WIN32
+ int tmp_count = __popcnt64(c_bit64);
+#else
+ int tmp_count = __builtin_popcountll(c_bit64);
+#endif
+
+ if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits
+ count += tmp_count;
+ //binary_int64_printf(c_bit64);
+ //printf(", count = %d \n\n", tmp_count);
+ }
+
+ C[i*ldc + j] = (2 * count - K) * mean_val;
+ }
+ }
+}
+*/
+
+//----------------------------
+
+
+#if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64)
+
+#define OSXSAVEFlag (1UL<<27)
+#define AVXFlag ((1UL<<28)|OSXSAVEFlag)
+#define FMAFlag ((1UL<<12)|AVXFlag|OSXSAVEFlag)
+#define CLMULFlag ((1UL<< 1)|AVXFlag|OSXSAVEFlag)
+#define VAESFlag ((1UL<<25)|AVXFlag|OSXSAVEFlag)
+
+#ifdef _WIN64
+#include <intrin.h>
+#include <ammintrin.h>
+#include <immintrin.h>
+#include <smmintrin.h>
+
+#else // Linux GCC/Clang
+#include <x86intrin.h>
+#include <ammintrin.h>
+#include <immintrin.h>
+#include <smmintrin.h>
+#include <cpuid.h>
+
+void asm_cpuid(uint32_t* abcd, uint32_t eax)
+{
+ uint32_t ebx = 0, edx = 0, ecx = 0;
+
+ // EBX is saved to EDI and later restored
+ __asm__("movl %%ebx, %%edi;"
+ "cpuid;"
+ "xchgl %%ebx, %%edi;"
+ : "=D"(ebx),
+ "+a"(eax), "+c"(ecx), "=d"(edx));
+
+ abcd[0] = eax;
+ abcd[1] = ebx;
+ abcd[2] = ecx;
+ abcd[3] = edx;
+}
+
+#endif
+
+int simd_detect_x86(unsigned int idFeature)
+{
+ uint32_t regs[4]; // EAX, EBX, ECX, EDX;
+#ifdef _WIN32
+ __cpuid(regs, 0);
+ if (regs[0] > 1U) __cpuid(regs, 1);
+#else
+ __get_cpuid(0, ®s[0], ®s[1], ®s[2], ®s[3]);
+ if(regs[0] > 1U) __get_cpuid(1, ®s[0], ®s[1], ®s[2], ®s[3]);
+#endif
+
+ if ((regs[2] & idFeature) != idFeature)
+ return 0;
+ return 1;
+}
+
+int is_fma_avx() {
+ static int result = -1;
+ if (result == -1) {
+ result = simd_detect_x86(AVXFlag);
+ if (result == 1) printf(" Used AVX \n");
+ else printf(" Not used AVX \n");
+ }
+ return result;
+}
+
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide
+void gemm_nn(int M, int N, int K, float ALPHA,
+ float *A, int lda,
+ float *B, int ldb,
+ float *C, int ldc)
+{
+ int i, j, k;
+ if (is_fma_avx() == 1) { // AVX
+ for (i = 0; i < M; ++i) {
+ for (k = 0; k < K; ++k) {
+ float A_PART = ALPHA*A[i*lda + k];
+ __m256 a256, b256, c256, result256; // AVX
+ a256 = _mm256_set1_ps(A_PART);
+ for (j = 0; j < N - 8; j += 8) {
+ b256 = _mm256_loadu_ps(&B[k*ldb + j]);
+ c256 = _mm256_loadu_ps(&C[i*ldc + j]);
+ // FMA - Intel Haswell (2013), AMD Piledriver (2012)
+ //result256 = _mm256_fmadd_ps(a256, b256, c256);
+ result256 = _mm256_mul_ps(a256, b256);
+ result256 = _mm256_add_ps(result256, c256);
+ _mm256_storeu_ps(&C[i*ldc + j], result256);
+ }
+
+ int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8;
+ for (j = prev_end; j < N; ++j)
+ C[i*ldc + j] += A_PART*B[k*ldb + j];
+ }
+ }
+ }
+ else {
+ for (i = 0; i < M; ++i) {
+ for (k = 0; k < K; ++k) {
+ register float A_PART = ALPHA*A[i*lda + k];
+ for (j = 0; j < N; ++j) {
+ C[i*ldc + j] += A_PART*B[k*ldb + j];
+ }
+ /* // SSE
+ __m128 a128, b128, c128, result128; // SSE
+ a128 = _mm_set1_ps(A_PART);
+ for (j = 0; j < N - 4; j += 4) {
+ b128 = _mm_loadu_ps(&B[k*ldb + j]);
+ c128 = _mm_loadu_ps(&C[i*ldc + j]);
+ //result128 = _mm_fmadd_ps(a128, b128, c128);
+ result128 = _mm_mul_ps(a128, b128);
+ result128 = _mm_add_ps(result128, c128);
+ _mm_storeu_ps(&C[i*ldc + j], result128);
+ }
+
+ int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4;
+ for (j = prev_end; j < N; ++j){
+ C[i*ldc + j] += A_PART*B[k*ldb + j];
+ }
+ */
+ }
+ }
+ }
+}
+
+
+// http://graphics.stanford.edu/~seander/bithacks.html
+// https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register
+
+
+static inline int popcnt128(__m128i n) {
+ const __m128i n_hi = _mm_unpackhi_epi64(n, n);
+#ifdef _MSC_VER
+ return __popcnt64(_mm_cvtsi128_si64(n)) + __popcnt64(_mm_cvtsi128_si64(n_hi));
+#else
+ return __popcntq(_mm_cvtsi128_si64(n)) + __popcntq(_mm_cvtsi128_si64(n_hi));
+#endif
+}
+
+static inline int popcnt256(__m256i n) {
+ return popcnt128(_mm256_extractf128_si256(n, 0)) + popcnt128(_mm256_extractf128_si256(n, 1));
+}
+
+static inline __m256i count256(__m256i v) {
+ __m256i lookup =
+ _mm256_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2,
+ 2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 1, 2, 2, 3,
+ 1, 2, 2, 3, 2, 3, 3, 4);
+
+ __m256i low_mask = _mm256_set1_epi8(0x0f);
+
+ __m256i lo = _mm256_and_si256(v, low_mask);
+ __m256i hi = _mm256_and_si256(_mm256_srli_epi32(v, 4), low_mask);
+ __m256i popcnt1 = _mm256_shuffle_epi8(lookup, lo);
+ __m256i popcnt2 = _mm256_shuffle_epi8(lookup, hi);
+ __m256i total = _mm256_add_epi8(popcnt1, popcnt2);
+
+ return _mm256_sad_epu8(total, _mm256_setzero_si256());
+}
+static inline int popcnt256_custom(__m256i n) {
+ return _mm_popcnt_u64(n.m256i_i64[0]) +
+ _mm_popcnt_u64(n.m256i_i64[1]) +
+ _mm_popcnt_u64(n.m256i_i64[2]) +
+ _mm_popcnt_u64(n.m256i_i64[3]);
+}
+
+static inline void CSA(__m256i * h, __m256i * l, __m256i a, __m256i b, __m256i c)
+{
+ __m256i u = _mm256_xor_si256(a, b);
+ *h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c));
+ *l = _mm256_xor_si256(u, c);
+}
+
+static inline __m256i xnor256(__m256i a_bit256, __m256i b_bit256) {
+ __m256i all_1 = _mm256_set1_epi8(255);
+ __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);
+ __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1);
+
+ return c_bit256;
+
+}
+
+// 2 x faster than popcnt: https://arxiv.org/pdf/1611.07612.pdf
+// step = 16*256/8 = 512 bytes = 4096 bit (ldb, lda, bit_step, align - all should be aligned by 4096 bit)
+static inline uint64_t avx_hs_custom(__m256i * A, __m256i * B, uint64_t size) {
+ __m256i total = _mm256_setzero_si256();
+ __m256i ones = _mm256_setzero_si256();
+ __m256i twos = _mm256_setzero_si256();
+ __m256i fours = _mm256_setzero_si256();
+ __m256i eights = _mm256_setzero_si256();
+ __m256i sixteens = _mm256_setzero_si256();
+ __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
+
+ for (uint64_t i = 0; i < size; i += 16) {
+ //CSA(&twosA, &ones, ones, d[i], d[i + 1]);
+ CSA(&twosA, &ones, ones, xnor256(A[i], B[i]), xnor256(A[i + 1], B[i + 1]));
+ CSA(&twosB, &ones, ones, xnor256(A[i + 2], B[i + 2]), xnor256(A[i + 3], B[i + 3]));
+ CSA(&foursA, &twos, twos, twosA, twosB);
+ CSA(&twosA, &ones, ones, xnor256(A[i + 4], B[i + 4]), xnor256(A[i + 5], B[i + 5]));
+ CSA(&twosB, &ones, ones, xnor256(A[i + 6], B[i + 6]), xnor256(A[i + 7], B[i + 7]));
+ CSA(&foursB, &twos, twos, twosA, twosB);
+ CSA(&eightsA, &fours, fours, foursA, foursB);
+ CSA(&twosA, &ones, ones, xnor256(A[i + 8], B[i + 8]), xnor256(A[i + 9], B[i + 9]));
+ CSA(&twosB, &ones, ones, xnor256(A[i + 10], B[i + 10]), xnor256(A[i + 11], B[i + 11]));
+ CSA(&foursA, &twos, twos, twosA, twosB);
+ CSA(&twosA, &ones, ones, xnor256(A[i + 12], B[i + 12]), xnor256(A[i + 13], B[i + 13]));
+ CSA(&twosB, &ones, ones, xnor256(A[i + 14], B[i + 14]), xnor256(A[i + 15], B[i + 15]));
+ CSA(&foursB, &twos, twos, twosA, twosB);
+ CSA(&eightsB, &fours, fours, foursA, foursB);
+ CSA(&sixteens, &eights, eights, eightsA, eightsB);
+
+ total = _mm256_add_epi64(total, count256(sixteens));
+ }
+ total = _mm256_slli_epi64(total, 4);
+ total = _mm256_add_epi64(total,
+ _mm256_slli_epi64(count256(eights), 3));
+ total = _mm256_add_epi64(total,
+ _mm256_slli_epi64(count256(fours), 2));
+ total = _mm256_add_epi64(total,
+ _mm256_slli_epi64(count256(twos), 1));
+ total = _mm256_add_epi64(total, count256(ones));
+
+ return total.m256i_i64[0] +
+ total.m256i_i64[1] +
+ total.m256i_i64[2] +
+ total.m256i_i64[3];
+
+ //return _mm256_extract_epi64(total, 0)
+ // + _mm256_extract_epi64(total, 1)
+ // + _mm256_extract_epi64(total, 2)
+ // + _mm256_extract_epi64(total, 3);
+}
+
+void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
+ unsigned char *A, int lda,
+ unsigned char *B, int ldb,
+ float *C, int ldc, float *mean_arr)
+{
+ __m256i all_1 = _mm256_set1_epi8(255);
+ int i, j, k;
+
+ //printf("\n M = %d, N = %d, K = %d, ldb = %d, M*ldb/8 = %d, N*ldb/8= %d \n", M, N, K, ldb, M*ldb/8, N*ldb/8);
+ //if (K > 4096) printf("!!!avx_hs!!! \n\n");
+
+ #pragma omp parallel for
+ for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
+ float mean_val = mean_arr[i];
+
+ for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+ int count = 0;
+ const int bit_step = 256;
+
+
+ int hs_count = 0;
+ if (K > 4096) {
+ hs_count = avx_hs_custom(A + (i*lda) / 8, B + (j*ldb) / 8, K / 256);
+
+ int local_bit_step = 4096;
+
+ int f1 = (K % local_bit_step == 0) ? 0 : (local_bit_step - (K % local_bit_step));
+ hs_count = hs_count - f1; // remove extra bits
+ count = hs_count;
+ }
+ else {
+ for (k = 0; k < K; k += bit_step) { // l.size*l.size*l.c - one filter size [27 - 9216]
+
+ //__m128i a_bit128 = _mm_loadu_si128((__m128i *)(A + (i*lda + k) / 8));
+ //__m128i b_bit128 = _mm_loadu_si128((__m128i *)(B + (j*ldb + k) / 8));
+ //__m128i xor128 = _mm_xor_si128(a_bit128, b_bit128);
+ //__m128i c_bit128 = _mm_andnot_si128(xor128, all_1);
+ //int tmp_count = popcnt128(c_bit128);
+
+ __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8));
+ __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8));
+ __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);
+ __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); //we can do NOT for wegihts once and do not do this NOT
+ int tmp_count = popcnt256(c_bit256);
+ //int tmp_count = popcnt256_custom(c_bit256);
+ count += tmp_count;
+
+ //binary_int64_printf(c_bit64);
+ //printf(", count = %d \n\n", tmp_count);
+ }
+
+ int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
+ count = count - f1; // remove extra bits
+ }
+
+ C[i*ldc + j] = (2 * count - K) * mean_val;
+ }
+ }
+}
+
+
+void float_to_bit(float *src, unsigned char *dst, size_t size)
+{
+ size_t dst_size = size / 8 + 1;
+ memset(dst, 0, dst_size);
+
+ size_t i;
+ __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
+
+ for (i = 0; i < size; i+=8)
+ {
+ __m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i]));
+ __m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats
+
+ uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1
+ mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0
+
+ dst[i / 8] = mask;
+ }
+}
+
+#else
+
+void gemm_nn(int M, int N, int K, float ALPHA,
+ float *A, int lda,
+ float *B, int ldb,
+ float *C, int ldc)
+{
+ int i, j, k;
+ for (i = 0; i < M; ++i) {
+ for (k = 0; k < K; ++k) {
+ register float A_PART = ALPHA*A[i*lda + k];
+ for (j = 0; j < N; ++j) {
+ C[i*ldc + j] += A_PART*B[k*ldb + j];
+ }
+ }
+ }
+}
+
+void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
+ unsigned char *A, int lda,
+ unsigned char *B, int ldb,
+ float *C, int ldc, float *mean_arr)
+{
+ int i, j, k, h;
+
+#pragma omp parallel for
+ for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
+ float mean_val = mean_arr[i];
+
+ for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+ int count = 0;
+
+ for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
+ uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8));
+ uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
+ uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
+
+#ifdef WIN32
+ int tmp_count = __popcnt64(c_bit64);
+#else
+ int tmp_count = __builtin_popcountll(c_bit64);
+#endif
+
+ if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits
+ count += tmp_count;
+ //binary_int64_printf(c_bit64);
+ //printf(", count = %d \n\n", tmp_count);
+ }
+
+ C[i*ldc + j] = (2 * count - K) * mean_val;
+ }
+ }
+}
+
+void float_to_bit(float *src, unsigned char *dst, size_t size)
+{
+ size_t dst_size = size / 8 + 1;
+ memset(dst, 0, dst_size);
+
+ size_t i;
+ char *byte_arr = calloc(size, sizeof(char));
+ for (i = 0; i < size; ++i) {
+ if (src[i] > 0) byte_arr[i] = 1;
+ }
+
+ //for (i = 0; i < size; ++i) {
+ // dst[i / 8] |= byte_arr[i] << (i % 8);
+ //}
+
+ for (i = 0; i < size; i += 8) {
+ char dst_tmp = 0;
+ dst_tmp |= byte_arr[i + 0] << 0;
+ dst_tmp |= byte_arr[i + 1] << 1;
+ dst_tmp |= byte_arr[i + 2] << 2;
+ dst_tmp |= byte_arr[i + 3] << 3;
+ dst_tmp |= byte_arr[i + 4] << 4;
+ dst_tmp |= byte_arr[i + 5] << 5;
+ dst_tmp |= byte_arr[i + 6] << 6;
+ dst_tmp |= byte_arr[i + 7] << 7;
+ dst[i / 8] = dst_tmp;
+ }
+ free(byte_arr);
+}
+#endif // __x86_64
+
+void gemm_nt(int M, int N, int K, float ALPHA,
+ float *A, int lda,
+ float *B, int ldb,
+ float *C, int ldc)
+{
+ int i,j,k;
+ for(i = 0; i < M; ++i){
+ for(j = 0; j < N; ++j){
+ register float sum = 0;
+ for(k = 0; k < K; ++k){
+ sum += ALPHA*A[i*lda+k]*B[j*ldb + k];
+ }
+ C[i*ldc+j] += sum;
+ }
+ }
+}
+
+void gemm_tn(int M, int N, int K, float ALPHA,
+ float *A, int lda,
+ float *B, int ldb,
+ float *C, int ldc)
+{
+ int i,j,k;
+ for(i = 0; i < M; ++i){
+ for(k = 0; k < K; ++k){
+ register float A_PART = ALPHA*A[k*lda+i];
+ for(j = 0; j < N; ++j){
+ C[i*ldc+j] += A_PART*B[k*ldb+j];
+ }
+ }
+ }
+}
+
+void gemm_tt(int M, int N, int K, float ALPHA,
+ float *A, int lda,
+ float *B, int ldb,
+ float *C, int ldc)
+{
+ int i,j,k;
+ for(i = 0; i < M; ++i){
+ for(j = 0; j < N; ++j){
+ register float sum = 0;
+ for(k = 0; k < K; ++k){
+ sum += ALPHA*A[i+k*lda]*B[k+j*ldb];
+ }
+ C[i*ldc+j] += sum;
+ }
+ }
+}
+
+
+void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,
+ float *A, int lda,
+ float *B, int ldb,
+ float BETA,
+ float *C, int ldc)
+{
+ //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc);
+ if (BETA != 1){
+ int i, j;
+ for(i = 0; i < M; ++i){
+ for(j = 0; j < N; ++j){
+ C[i*ldc + j] *= BETA;
+ }
+ }
+ }
+
+ int t;
+ #pragma omp parallel for
+ for (t = 0; t < M; ++t) {
+ if (!TA && !TB)
+ gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
+ else if (TA && !TB)
+ gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
+ else if (!TA && TB)
+ gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
+ else
+ gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
+ }
+}
+
+#ifdef GPU
+
+#include <math.h>
+
+void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
+ float *A_gpu, int lda,
+ float *B_gpu, int ldb,
+ float BETA,
+ float *C_gpu, int ldc)
+{
+ cublasHandle_t handle = blas_handle();
+ cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream());
+ cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N),
+ (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc);
+ check_error(status);
+}
+
+void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
+ float *A, int lda,
+ float *B, int ldb,
+ float BETA,
+ float *C, int ldc)
+{
+ float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M));
+ float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K));
+ float *C_gpu = cuda_make_array(C, ldc*M);
+
+ gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
+
+ cuda_pull_array(C_gpu, C, ldc*M);
+ cuda_free(A_gpu);
+ cuda_free(B_gpu);
+ cuda_free(C_gpu);
+}
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <time.h>
+
+void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
+{
+ float *a;
+ if(!TA) a = random_matrix(m,k);
+ else a = random_matrix(k,m);
+ int lda = (!TA)?k:m;
+ float *b;
+ if(!TB) b = random_matrix(k,n);
+ else b = random_matrix(n,k);
+ int ldb = (!TB)?n:k;
+
+ float *c = random_matrix(m,n);
+ int i;
+ clock_t start = clock(), end;
+ for(i = 0; i<32; ++i){
+ gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
+ }
+ end = clock();
+ printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
+ free(a);
+ free(b);
+ free(c);
+}
+
+void time_ongpu(int TA, int TB, int m, int k, int n)
+{
+ int iter = 10;
+ float *a = random_matrix(m,k);
+ float *b = random_matrix(k,n);
+
+ int lda = (!TA)?k:m;
+ int ldb = (!TB)?n:k;
+
+ float *c = random_matrix(m,n);
+
+ float *a_cl = cuda_make_array(a, m*k);
+ float *b_cl = cuda_make_array(b, k*n);
+ float *c_cl = cuda_make_array(c, m*n);
+
+ int i;
+ clock_t start = clock(), end;
+ for(i = 0; i<iter; ++i){
+ gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
+ cudaThreadSynchronize();
+ }
+ double flop = ((double)m)*n*(2.*k + 2.)*iter;
+ double gflop = flop/pow(10., 9);
+ end = clock();
+ double seconds = sec(end-start);
+ printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds);
+ cuda_free(a_cl);
+ cuda_free(b_cl);
+ cuda_free(c_cl);
+ free(a);
+ free(b);
+ free(c);
+}
+
+
+void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
+{
+ srand(0);
+ float *a;
+ if(!TA) a = random_matrix(m,k);
+ else a = random_matrix(k,m);
+ int lda = (!TA)?k:m;
+ float *b;
+ if(!TB) b = random_matrix(k,n);
+ else b = random_matrix(n,k);
+ int ldb = (!TB)?n:k;
+
+ float *c = random_matrix(m,n);
+ float *c_gpu = random_matrix(m,n);
+ memset(c, 0, m*n*sizeof(float));
+ memset(c_gpu, 0, m*n*sizeof(float));
+ int i;
+ //pm(m,k,b);
+ gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
+ //printf("GPU\n");
+ //pm(m, n, c_gpu);
+
+ gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
+ //printf("\n\nCPU\n");
+ //pm(m, n, c);
+ double sse = 0;
+ for(i = 0; i < m*n; ++i) {
+ //printf("%f %f\n", c[i], c_gpu[i]);
+ sse += pow(c[i]-c_gpu[i], 2);
+ }
+ printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g SSE\n",m,k,k,n, TA, TB, sse/(m*n));
+ free(a);
+ free(b);
+ free(c);
+ free(c_gpu);
+}
+
+int test_gpu_blas()
+{
+ /*
+ test_gpu_accuracy(0,0,10,576,75);
+
+ test_gpu_accuracy(0,0,17,10,10);
+ test_gpu_accuracy(1,0,17,10,10);
+ test_gpu_accuracy(0,1,17,10,10);
+ test_gpu_accuracy(1,1,17,10,10);
+
+ test_gpu_accuracy(0,0,1000,10,100);
+ test_gpu_accuracy(1,0,1000,10,100);
+ test_gpu_accuracy(0,1,1000,10,100);
+ test_gpu_accuracy(1,1,1000,10,100);
+
+ test_gpu_accuracy(0,0,10,10,10);
+
+ time_ongpu(0,0,64,2916,363);
+ time_ongpu(0,0,64,2916,363);
+ time_ongpu(0,0,64,2916,363);
+ time_ongpu(0,0,192,729,1600);
+ time_ongpu(0,0,384,196,1728);
+ time_ongpu(0,0,256,196,3456);
+ time_ongpu(0,0,256,196,2304);
+ time_ongpu(0,0,128,4096,12544);
+ time_ongpu(0,0,128,4096,4096);
+ */
+ time_ongpu(0,0,64,75,12544);
+ time_ongpu(0,0,64,75,12544);
+ time_ongpu(0,0,64,75,12544);
+ time_ongpu(0,0,64,576,12544);
+ time_ongpu(0,0,256,2304,784);
+ time_ongpu(1,1,2304,256,784);
+ time_ongpu(0,0,512,4608,196);
+ time_ongpu(1,1,4608,512,196);
+
+ return 0;
+}
+#endif
+
diff --git a/src/image.c b/src/image.c
index 4807371..7cf3dc0 100644
--- a/src/image.c
+++ b/src/image.c
@@ -102,7 +102,7 @@
if(a.w == 0) return copy_image(b);
image c = make_image(a.w + b.w + dx, (a.h > b.h) ? a.h : b.h, (a.c > b.c) ? a.c : b.c);
fill_cpu(c.w*c.h*c.c, 1, c.data, 1);
- embed_image(a, c, 0, 0);
+ embed_image(a, c, 0, 0);
composite_image(b, c, a.w + dx, 0);
return c;
}
@@ -267,7 +267,7 @@
return delta < 0 ? -1 : delta > 0 ? 1 : 0;
}
-// compare to sort detection** by best_class probability
+// compare to sort detection** by best_class probability
int compare_by_probs(const void *a_ptr, const void *b_ptr) {
const detection_with_class* a = (detection_with_class*)a_ptr;
const detection_with_class* b = (detection_with_class*)b_ptr;
@@ -421,7 +421,7 @@
if(top < 0) top = 0;
if(bot > im.h-1) bot = im.h-1;
printf("%s: %.0f%%", names[class_id], prob * 100);
-
+
//printf(" - id: %d, x_center: %d, y_center: %d, width: %d, height: %d",
// class_id, (right + left) / 2, (bot - top) / 2, right - left, bot - top);
@@ -481,6 +481,10 @@
rgb[1] = green;
rgb[2] = blue;
box b = dets[i].bbox;
+ b.w = (b.w < 1) ? b.w : 1;
+ b.h = (b.h < 1) ? b.h : 1;
+ b.x = (b.x < 1) ? b.x : 1;
+ b.y = (b.y < 1) ? b.y : 1;
//printf("%f %f %f %f\n", b.x, b.y, b.w, b.h);
int left = (b.x - b.w / 2.)*show_img->width;
@@ -535,10 +539,11 @@
cvRectangle(show_img, pt1, pt2, color, width, 8, 0);
if (ext_output)
- printf("\t(left_x: %4.0f top_y: %4.0f width: %4.0f height: %4.0f)\n",
+ printf("\t(left_x: %4.0f top_y: %4.0f width: %4.0f height: %4.0f)\n",
(float)left, (float)top, b.w*show_img->width, b.h*show_img->height);
else
printf("\n");
+
cvRectangle(show_img, pt_text_bg1, pt_text_bg2, color, width, 8, 0);
cvRectangle(show_img, pt_text_bg1, pt_text_bg2, color, CV_FILLED, 8, 0); // filled
CvScalar black_color;
@@ -617,7 +622,7 @@
CvScalar black_color;
black_color.val[0] = 0;
CvFont font;
- cvInitFont(&font, CV_FONT_HERSHEY_SIMPLEX, font_size, font_size, 0, font_size * 3, 8);
+ cvInitFont(&font, CV_FONT_HERSHEY_SIMPLEX, font_size, font_size, 0, font_size * 3, 8);
cvPutText(show_img, names[class_id], pt_text, &font, black_color);
}
}
@@ -881,7 +886,7 @@
IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c);
int step = disp->widthStep;
- cvNamedWindow(buff, CV_WINDOW_NORMAL);
+ cvNamedWindow(buff, CV_WINDOW_NORMAL);
//cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10));
++windows;
for(y = 0; y < p.h; ++y){
@@ -1057,7 +1062,7 @@
}
else src = cvQueryFrame(cap);
- if (cpp_video_capture)
+ if (cpp_video_capture)
if(!wait_for_stream(cap, src, dont_close)) return make_empty_image(0, 0, 0);
IplImage* new_img = cvCreateImage(cvSize(w, h), IPL_DEPTH_8U, c);
*in_img = cvCreateImage(cvSize(src->width, src->height), IPL_DEPTH_8U, c);
@@ -1588,7 +1593,7 @@
for(k = 0; k < fore.c; ++k){
for(j = 0; j < fore.h; ++j){
for(i = 0; i < fore.w; ++i){
- float val = alpha * get_pixel(fore, i, j, k) +
+ float val = alpha * get_pixel(fore, i, j, k) +
(1 - alpha)* get_pixel(back, i, j, k);
set_pixel(blend, i, j, k, val);
}
@@ -1708,8 +1713,8 @@
float dx = x - ix;
float dy = y - iy;
- float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) +
- dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) +
+ float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) +
+ dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) +
(1-dy) * dx * get_pixel_extend(im, ix+1, iy, c) +
dy * dx * get_pixel_extend(im, ix+1, iy+1, c);
return val;
@@ -1717,7 +1722,7 @@
image resize_image(image im, int w, int h)
{
- image resized = make_image(w, h, im.c);
+ image resized = make_image(w, h, im.c);
image part = make_image(w, im.h, im.c);
int r, c, k;
float w_scale = (float)(im.w - 1) / (w - 1);
@@ -1931,7 +1936,7 @@
free_image(copy);
}
return filters;
-}
+}
image collapse_images_horz(image *ims, int n)
{
@@ -1967,7 +1972,7 @@
free_image(copy);
}
return filters;
-}
+}
void show_image_normalized(image im, const char *name)
{
diff --git a/src/network.c b/src/network.c
index 63b76a8..a62f6d0 100644
--- a/src/network.c
+++ b/src/network.c
@@ -862,6 +862,8 @@
if (l->xnor) {
//printf("\n %d \n", j);
size_t ldb_align = 256; // 256bit for AVX2
+ if (l->size*l->size*l->c > 4096) ldb_align = 4096;
+
binary_transpose_align_weights(l, ldb_align);
}
}
--
Gitblit v1.10.0