From a284a7da8d1facbf984a22302665a2a50295a687 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Wed, 08 Aug 2018 16:08:58 +0000
Subject: [PATCH] Try to use avx_hs() - slow and requires alignment 4096 bits < (l.size*l.size*l.c) May be faster only from 8192 bits and more.

---
 src/gemm.c | 1813 ++++++++++++++++++++++++++++++---------------------------
 1 files changed, 956 insertions(+), 857 deletions(-)

diff --git a/src/gemm.c b/src/gemm.c
index ee7fa15..63163a5 100644
--- a/src/gemm.c
+++ b/src/gemm.c
@@ -1,857 +1,956 @@
-#include "gemm.h"
-#include "utils.h"
-#include "cuda.h"
-#include <stdlib.h>
-#include <stdio.h>
-#include <math.h>
-
-void gemm_bin(int M, int N, int K, float ALPHA,
-        char  *A, int lda,
-        float *B, int ldb,
-        float *C, int ldc)
-{
-    int i,j,k;
-    for(i = 0; i < M; ++i){
-        for(k = 0; k < K; ++k){
-            char A_PART = A[i*lda+k];
-            if(A_PART){
-                for(j = 0; j < N; ++j){
-                    C[i*ldc+j] += B[k*ldb+j];
-                }
-            } else {
-                for(j = 0; j < N; ++j){
-                    C[i*ldc+j] -= B[k*ldb+j];
-                }
-            }
-        }
-    }
-}
-
-float *random_matrix(int rows, int cols)
-{
-    int i;
-    float *m = calloc(rows*cols, sizeof(float));
-    for(i = 0; i < rows*cols; ++i){
-        m[i] = (float)rand()/RAND_MAX;
-    }
-    return m;
-}
-
-void time_random_matrix(int TA, int TB, int m, int k, int n)
-{
-    float *a;
-    if(!TA) a = random_matrix(m,k);
-    else a = random_matrix(k,m);
-    int lda = (!TA)?k:m;
-    float *b;
-    if(!TB) b = random_matrix(k,n);
-    else b = random_matrix(n,k);
-    int ldb = (!TB)?n:k;
-
-    float *c = random_matrix(m,n);
-    int i;
-    clock_t start = clock(), end;
-    for(i = 0; i<10; ++i){
-        gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
-    }
-    end = clock();
-    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
-    free(a);
-    free(b);
-    free(c);
-}
-
-
-void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
-        float *A, int lda,
-        float *B, int ldb,
-        float BETA,
-        float *C, int ldc)
-{
-    gemm_cpu( TA,  TB,  M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
-}
-
-
-//--------------------------------------------
-// XNOR bitwise GEMM for binary neural network
-//--------------------------------------------
-
-#include <stdint.h>
-
-static inline unsigned char xnor(unsigned char a, unsigned char b) {
-    //return a == b;
-    return !(a^b);
-}
-
-// INT-32
-static inline uint32_t get_bit_int32(uint32_t const*const src, size_t index) {
-    size_t src_i = index / 32;
-    int src_shift = index % 32;
-    unsigned char val = (src[src_i] & (1 << src_shift)) > 0;
-    return val;
-}
-
-static inline uint32_t xnor_int32(uint32_t a, uint32_t b) {
-    return ~(a^b);
-}
-
-static inline uint64_t xnor_int64(uint64_t a, uint64_t b) {
-    return ~(a^b);
-}
-
-
-static inline uint32_t fill_bit_int32(char src) {
-    if (src == 0) return 0x00000000;
-    else return  0xFFFFFFFF;
-}
-
-static inline uint64_t fill_bit_int64(char src) {
-    if (src == 0) return 0x0000000000000000;
-    else return  0xFFFFFFFFFFFFFFFF;
-}
-
-void binary_int32_printf(uint32_t src) {
-    int i;
-    for (i = 0; i < 32; ++i) {
-        if (src & 1) printf("1");
-        else printf("0");
-        src = src >> 1;
-    }
-    printf("\n");
-}
-
-void binary_int64_printf(uint64_t src) {
-    int i;
-    for (i = 0; i < 64; ++i) {
-        if (src & 1) printf("1");
-        else printf("0");
-        src = src >> 1;
-    }
-    printf("\n");
-}
-
-/*
-void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
-    unsigned char *A, int lda,
-    unsigned char *B, int ldb,
-    float *C, int ldc, float *mean_arr)
-{
-    int *count_arr = calloc(M*N, sizeof(int));
-
-    int i, j, k;
-    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
-        for (k = 0; k < K; ++k) {   // l.size*l.size*l.c - one filter size [27 - 9216]
-            char a_bit = get_bit(A, i*lda + k);
-
-            for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
-                char b_bit = get_bit(B, k*ldb + j);
-                count_arr[i*ldc + j] += xnor(a_bit, b_bit);
-            }
-        }
-    }
-
-    for (i = 0; i < M; ++i) {
-        float mean_val = mean_arr[i];
-        for (j = 0; j < N; ++j) {
-            C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
-        }
-    }
-    free(count_arr);
-}
-*/
-
-/*
-void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
-    unsigned char *A, int lda,
-    unsigned char *B, int ldb,
-    float *C, int ldc, float *mean_arr)
-{
-    int *count_arr = calloc(M*N, sizeof(int));
-
-    int i, j, k;
-    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
-        for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
-            for (k = 0; k < K; ++k) {   // l.size*l.size*l.c - one filter size [27 - 9216]
-                char a_bit = get_bit(A, i*lda + k);
-                char b_bit = get_bit(B, j*ldb + k);
-                count_arr[i*ldc + j] += xnor(a_bit, b_bit);
-            }
-        }
-    }
-
-    for (i = 0; i < M; ++i) {
-        float mean_val = mean_arr[i];
-        for (j = 0; j < N; ++j) {
-            C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
-        }
-    }
-    free(count_arr);
-}
-*/
-
-/*
-void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
-    unsigned char *A, int lda,
-    unsigned char *B, int ldb,
-    float *C, int ldc, float *mean_arr)
-{
-    int *count_arr = calloc(M*N, sizeof(int));
-
-    int i, j, k, h;
-
-#pragma omp parallel for
-    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
-        for (k = 0; k < K; ++k) {   // l.size*l.size*l.c - one filter size [27 - 9216]
-            const char a_bit = get_bit(A, i*lda + k);
-            uint64_t a_bit64 = fill_bit_int64(a_bit);
-            int  k_ldb = k*ldb;
-
-            for (j = 0; j < N; j += 64) { // out_h*out_w - one channel output size [169 - 173056]
-                if ((N - j > 64) && (k_ldb % 8 == 0)) {
-                    uint64_t b_bit64 = *((uint64_t *)(B + (k_ldb + j) / 8));
-                    uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
-                    //printf("\n %d \n",__builtin_popcountll(c_bit64)); // gcc
-                    printf("\n %d \n", __popcnt64(c_bit64));    // msvs
-
-                    int h;
-                    for (h = 0; h < 64; ++h)
-                        if ((c_bit64 >> h) & 1) count_arr[i*ldc + j + h] += 1;
-
-                    //binary_int64_printf(a_bit64);
-                    //binary_int64_printf(b_bit64);
-                    //binary_int64_printf(c_bit64);
-                }
-                else {
-                    for (; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
-                        char b_bit = get_bit(B, k_ldb + j);
-                        if (xnor(a_bit, b_bit)) count_arr[i*ldc + j] += 1;
-                    }
-                }
-
-            }
-        }
-    }
-
-    if (mean_arr) {
-        //int K_2 = K / 2;
-        for (i = 0; i < M; ++i) {
-            float mean_val = mean_arr[i];
-            //float mean_val2 = 2 * mean_val;
-            for (j = 0; j < N; ++j) {
-                C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
-                //C[i*ldc + j] = (count_arr[i*ldc + j] - K_2) *mean_val2;
-            }
-        }
-    }
-    else {
-        for (i = 0; i < M; ++i) {
-            for (j = 0; j < N; ++j) {
-                C[i*ldc + j] = count_arr[i*ldc + j] - K / 2;
-            }
-        }
-    }
-
-    free(count_arr);
-
-    //getchar();
-}
-*/
-
-
-/*
-void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
-    unsigned char *A, int lda,
-    unsigned char *B, int ldb,
-    float *C, int ldc, float *mean_arr)
-{
-    int i, j, k, h;
-
-#pragma omp parallel for
-    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
-        float mean_val = mean_arr[i];
-
-        for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
-            int count = 0;
-
-            for (k = 0; k < K; k += 64) {   // l.size*l.size*l.c - one filter size [27 - 9216]
-                uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8));
-                uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
-                uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
-
-#ifdef WIN32
-                int tmp_count = __popcnt64(c_bit64);
-#else
-                int tmp_count = __builtin_popcountll(c_bit64);
-#endif
-
-                if (K - k < 64)  tmp_count = tmp_count - (64 - (K - k));    // remove extra bits
-                count += tmp_count;
-                //binary_int64_printf(c_bit64);
-                //printf(", count = %d \n\n", tmp_count);
-            }
-
-            C[i*ldc + j] = (2 * count - K) * mean_val;
-        }
-    }
-}
-*/
-
-//----------------------------
-
-
-#if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64)
-
-#define OSXSAVEFlag (1UL<<27)
-#define AVXFlag     ((1UL<<28)|OSXSAVEFlag)
-#define FMAFlag     ((1UL<<12)|AVXFlag|OSXSAVEFlag)
-#define CLMULFlag   ((1UL<< 1)|AVXFlag|OSXSAVEFlag)
-#define VAESFlag    ((1UL<<25)|AVXFlag|OSXSAVEFlag)
-
-#ifdef _WIN64
-#include <intrin.h>
-#include <ammintrin.h>
-#include <immintrin.h>
-#include <smmintrin.h>
-
-#else    // Linux GCC/Clang
-#include <x86intrin.h>
-#include <ammintrin.h>
-#include <immintrin.h>
-#include <smmintrin.h>
-#include <cpuid.h>
-
-void asm_cpuid(uint32_t* abcd, uint32_t eax)
-{
-    uint32_t ebx = 0, edx = 0, ecx = 0;
-
-    // EBX is saved to EDI and later restored
-    __asm__("movl %%ebx, %%edi;"
-        "cpuid;"
-        "xchgl %%ebx, %%edi;"
-        : "=D"(ebx),
-        "+a"(eax), "+c"(ecx), "=d"(edx));
-
-    abcd[0] = eax;
-    abcd[1] = ebx;
-    abcd[2] = ecx;
-    abcd[3] = edx;
-}
-
-#endif
-
-int simd_detect_x86(unsigned int idFeature)
-{
-    uint32_t regs[4];    // EAX, EBX, ECX, EDX;
-#ifdef _WIN32
-    __cpuid(regs, 0);
-    if (regs[0] > 1U) __cpuid(regs, 1);
-#else
-    __get_cpuid(0, &regs[0], &regs[1], &regs[2], &regs[3]);
-    if(regs[0] > 1U) __get_cpuid(1, &regs[0], &regs[1], &regs[2], &regs[3]);
-#endif
-
-    if ((regs[2] & idFeature) != idFeature)
-        return 0;
-    return 1;
-}
-
-int is_fma_avx() {
-    static int result = -1;
-    if (result == -1) {
-        result = simd_detect_x86(AVXFlag);
-        if (result == 1) printf(" Used AVX \n");
-        else printf(" Not used AVX \n");
-    }
-    return result;
-}
-
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide
-void gemm_nn(int M, int N, int K, float ALPHA,
-    float *A, int lda,
-    float *B, int ldb,
-    float *C, int ldc)
-{
-    int i, j, k;
-    if (is_fma_avx() == 1) {    // AVX
-        for (i = 0; i < M; ++i) {
-            for (k = 0; k < K; ++k) {
-                float A_PART = ALPHA*A[i*lda + k];
-                __m256 a256, b256, c256, result256;    // AVX
-                a256 = _mm256_set1_ps(A_PART);
-                for (j = 0; j < N - 8; j += 8) {
-                    b256 = _mm256_loadu_ps(&B[k*ldb + j]);
-                    c256 = _mm256_loadu_ps(&C[i*ldc + j]);
-                    // FMA - Intel Haswell (2013), AMD Piledriver (2012)
-                    //result256 = _mm256_fmadd_ps(a256, b256, c256);
-                    result256 = _mm256_mul_ps(a256, b256);
-                    result256 = _mm256_add_ps(result256, c256);
-                    _mm256_storeu_ps(&C[i*ldc + j], result256);
-                }
-
-                int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8;
-                for (j = prev_end; j < N; ++j)
-                    C[i*ldc + j] += A_PART*B[k*ldb + j];
-            }
-        }
-    }
-    else {
-        for (i = 0; i < M; ++i) {
-            for (k = 0; k < K; ++k) {
-                register float A_PART = ALPHA*A[i*lda + k];
-                for (j = 0; j < N; ++j) {
-                    C[i*ldc + j] += A_PART*B[k*ldb + j];
-                }
-                /* // SSE
-                __m128 a128, b128, c128, result128;    // SSE
-                a128 = _mm_set1_ps(A_PART);
-                for (j = 0; j < N - 4; j += 4) {
-                b128 = _mm_loadu_ps(&B[k*ldb + j]);
-                c128 = _mm_loadu_ps(&C[i*ldc + j]);
-                //result128 = _mm_fmadd_ps(a128, b128, c128);
-                result128 = _mm_mul_ps(a128, b128);
-                result128 = _mm_add_ps(result128, c128);
-                _mm_storeu_ps(&C[i*ldc + j], result128);
-                }
-
-                int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4;
-                for (j = prev_end; j < N; ++j){
-                C[i*ldc + j] += A_PART*B[k*ldb + j];
-                }
-                */
-            }
-        }
-    }
-}
-
-
-// http://graphics.stanford.edu/~seander/bithacks.html
-// https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register
-
-// 2 x faster than popcnt: https://arxiv.org/pdf/1611.07612.pdf
-
-static inline int popcnt128(__m128i n) {
-    const __m128i n_hi = _mm_unpackhi_epi64(n, n);
-#ifdef _MSC_VER
-    return __popcnt64(_mm_cvtsi128_si64(n)) + __popcnt64(_mm_cvtsi128_si64(n_hi));
-#else
-    return __popcntq(_mm_cvtsi128_si64(n)) + __popcntq(_mm_cvtsi128_si64(n_hi));
-#endif
-}
-
-static inline int popcnt256(__m256i n) {
-    return popcnt128(_mm256_extractf128_si256(n, 0)) + popcnt128(_mm256_extractf128_si256(n, 1));
-}
-
-void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
-    unsigned char *A, int lda,
-    unsigned char *B, int ldb,
-    float *C, int ldc, float *mean_arr)
-{
-    __m256i all_1 = _mm256_set1_epi8(255);
-    int i, j, k, h;
-
-    #pragma omp parallel for
-    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
-        float mean_val = mean_arr[i];
-
-        for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
-            int count = 0;
-            const int bit_step = 256;
-
-            for (k = 0; k < K; k += bit_step) {   // l.size*l.size*l.c - one filter size [27 - 9216]
-
-                //__m128i a_bit128 = _mm_loadu_si128((__m128i *)(A + (i*lda + k) / 8));
-                //__m128i b_bit128 = _mm_loadu_si128((__m128i *)(B + (j*ldb + k) / 8));
-                //__m128i xor128 = _mm_xor_si128(a_bit128, b_bit128);
-                //__m128i c_bit128 = _mm_andnot_si128(xor128, all_1);
-                //int tmp_count = popcnt128(c_bit128);
-
-                __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8));
-                __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8));
-                __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);
-                __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); //we can do NOT for wegihts once and do not do this NOT
-                int tmp_count = popcnt256(c_bit256);
-
-                if (K - k < bit_step)  tmp_count = tmp_count - (bit_step - (K - k));    // remove extra bits
-                count += tmp_count;
-                //binary_int64_printf(c_bit64);
-                //printf(", count = %d \n\n", tmp_count);
-            }
-
-            C[i*ldc + j] = (2 * count - K) * mean_val;
-        }
-    }
-}
-
-
-void float_to_bit(float *src, unsigned char *dst, size_t size)
-{
-    size_t dst_size = size / 8 + 1;
-    memset(dst, 0, dst_size);
-
-    size_t i;
-    __m128i all128_0 = _mm_set_epi32(0, 0, 0, 0);
-    __m256 all256_0 = _mm256_set1_ps(0);
-    __m256i bits_asc = _mm256_set_epi32(1, 2, 4, 8, 16, 32, 64, 128);
-    //for(i = 0; i < 8; ++i) bits_asc.m256i_i32[i] = 1 << i;
-
-    for (i = 0; i < size; i+=8)
-    {
-        __m256 src256 = _mm256_loadu_ps((__m256i *)(&src[i]));  // load 256 bits
-        __m256 result256 = _mm256_cmp_ps(src256, all256_0, _CMP_GT_OS); // compare dst[i] = (float[i] > 0)
-
-        __m256i bits256 = _mm256_castps_si256(result256);       // floats to ints32
-        __m256i and256 = _mm256_and_si256(bits256, bits_asc);   // bitwise and
-
-        // sum all elements from single and256
-        __m128i tmp128 = _mm_hadd_epi32(_mm256_extractf128_si256(and256, 0), _mm256_extractf128_si256(and256, 1));
-        tmp128 = _mm_hadd_epi32(tmp128, all128_0);
-        tmp128 = _mm_hadd_epi32(tmp128, all128_0);
-
-        dst[i / 8] = tmp128.m128i_i32[0];
-    }
-    // int _mm256_movemask_epi8 (__m256i a)
-}
-
-#else
-
-void gemm_nn(int M, int N, int K, float ALPHA,
-    float *A, int lda,
-    float *B, int ldb,
-    float *C, int ldc)
-{
-    int i, j, k;
-    for (i = 0; i < M; ++i) {
-        for (k = 0; k < K; ++k) {
-            register float A_PART = ALPHA*A[i*lda + k];
-            for (j = 0; j < N; ++j) {
-                C[i*ldc + j] += A_PART*B[k*ldb + j];
-            }
-        }
-    }
-}
-
-void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
-    unsigned char *A, int lda,
-    unsigned char *B, int ldb,
-    float *C, int ldc, float *mean_arr)
-{
-    int i, j, k, h;
-
-#pragma omp parallel for
-    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
-        float mean_val = mean_arr[i];
-
-        for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
-            int count = 0;
-
-            for (k = 0; k < K; k += 64) {   // l.size*l.size*l.c - one filter size [27 - 9216]
-                uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8));
-                uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
-                uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
-
-#ifdef WIN32
-                int tmp_count = __popcnt64(c_bit64);
-#else
-                int tmp_count = __builtin_popcountll(c_bit64);
-#endif
-
-                if (K - k < 64)  tmp_count = tmp_count - (64 - (K - k));    // remove extra bits
-                count += tmp_count;
-                //binary_int64_printf(c_bit64);
-                //printf(", count = %d \n\n", tmp_count);
-            }
-
-            C[i*ldc + j] = (2 * count - K) * mean_val;
-        }
-    }
-}
-
-void float_to_bit(float *src, unsigned char *dst, size_t size)
-{
-    size_t dst_size = size / 8 + 1;
-    memset(dst, 0, dst_size);
-
-    size_t i;
-    char *byte_arr = calloc(size, sizeof(char));
-    for (i = 0; i < size; ++i) {
-        if (src[i] > 0) byte_arr[i] = 1;
-    }
-
-    //for (i = 0; i < size; ++i) {
-    //    dst[i / 8] |= byte_arr[i] << (i % 8);
-    //}
-
-    for (i = 0; i < size; i += 8) {
-        char dst_tmp = 0;
-        dst_tmp |= byte_arr[i + 0] << 0;
-        dst_tmp |= byte_arr[i + 1] << 1;
-        dst_tmp |= byte_arr[i + 2] << 2;
-        dst_tmp |= byte_arr[i + 3] << 3;
-        dst_tmp |= byte_arr[i + 4] << 4;
-        dst_tmp |= byte_arr[i + 5] << 5;
-        dst_tmp |= byte_arr[i + 6] << 6;
-        dst_tmp |= byte_arr[i + 7] << 7;
-        dst[i / 8] = dst_tmp;
-    }
-    free(byte_arr);
-}
-#endif    // __x86_64
-
-void gemm_nt(int M, int N, int K, float ALPHA,
-        float *A, int lda,
-        float *B, int ldb,
-        float *C, int ldc)
-{
-    int i,j,k;
-    for(i = 0; i < M; ++i){
-        for(j = 0; j < N; ++j){
-            register float sum = 0;
-            for(k = 0; k < K; ++k){
-                sum += ALPHA*A[i*lda+k]*B[j*ldb + k];
-            }
-            C[i*ldc+j] += sum;
-        }
-    }
-}
-
-void gemm_tn(int M, int N, int K, float ALPHA,
-        float *A, int lda,
-        float *B, int ldb,
-        float *C, int ldc)
-{
-    int i,j,k;
-    for(i = 0; i < M; ++i){
-        for(k = 0; k < K; ++k){
-            register float A_PART = ALPHA*A[k*lda+i];
-            for(j = 0; j < N; ++j){
-                C[i*ldc+j] += A_PART*B[k*ldb+j];
-            }
-        }
-    }
-}
-
-void gemm_tt(int M, int N, int K, float ALPHA,
-        float *A, int lda,
-        float *B, int ldb,
-        float *C, int ldc)
-{
-    int i,j,k;
-    for(i = 0; i < M; ++i){
-        for(j = 0; j < N; ++j){
-            register float sum = 0;
-            for(k = 0; k < K; ++k){
-                sum += ALPHA*A[i+k*lda]*B[k+j*ldb];
-            }
-            C[i*ldc+j] += sum;
-        }
-    }
-}
-
-
-void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,
-        float *A, int lda,
-        float *B, int ldb,
-        float BETA,
-        float *C, int ldc)
-{
-    //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc);
-    if (BETA != 1){
-        int i, j;
-        for(i = 0; i < M; ++i){
-            for(j = 0; j < N; ++j){
-                C[i*ldc + j] *= BETA;
-            }
-        }
-    }
-
-    int t;
-    #pragma omp parallel for
-    for (t = 0; t < M; ++t) {
-        if (!TA && !TB)
-            gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
-        else if (TA && !TB)
-            gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
-        else if (!TA && TB)
-            gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
-        else
-            gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
-    }
-}
-
-#ifdef GPU
-
-#include <math.h>
-
-void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
-        float *A_gpu, int lda,
-        float *B_gpu, int ldb,
-        float BETA,
-        float *C_gpu, int ldc)
-{
-    cublasHandle_t handle = blas_handle();
-    cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream());
-    cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N),
-            (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc);
-    check_error(status);
-}
-
-void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
-        float *A, int lda,
-        float *B, int ldb,
-        float BETA,
-        float *C, int ldc)
-{
-    float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M));
-    float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K));
-    float *C_gpu = cuda_make_array(C, ldc*M);
-
-    gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
-
-    cuda_pull_array(C_gpu, C, ldc*M);
-    cuda_free(A_gpu);
-    cuda_free(B_gpu);
-    cuda_free(C_gpu);
-}
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <time.h>
-
-void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
-{
-    float *a;
-    if(!TA) a = random_matrix(m,k);
-    else a = random_matrix(k,m);
-    int lda = (!TA)?k:m;
-    float *b;
-    if(!TB) b = random_matrix(k,n);
-    else b = random_matrix(n,k);
-    int ldb = (!TB)?n:k;
-
-    float *c = random_matrix(m,n);
-    int i;
-    clock_t start = clock(), end;
-    for(i = 0; i<32; ++i){
-        gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
-    }
-    end = clock();
-    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
-    free(a);
-    free(b);
-    free(c);
-}
-
-void time_ongpu(int TA, int TB, int m, int k, int n)
-{
-    int iter = 10;
-    float *a = random_matrix(m,k);
-    float *b = random_matrix(k,n);
-
-    int lda = (!TA)?k:m;
-    int ldb = (!TB)?n:k;
-
-    float *c = random_matrix(m,n);
-
-    float *a_cl = cuda_make_array(a, m*k);
-    float *b_cl = cuda_make_array(b, k*n);
-    float *c_cl = cuda_make_array(c, m*n);
-
-    int i;
-    clock_t start = clock(), end;
-    for(i = 0; i<iter; ++i){
-        gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
-        cudaThreadSynchronize();
-    }
-    double flop = ((double)m)*n*(2.*k + 2.)*iter;
-    double gflop = flop/pow(10., 9);
-    end = clock();
-    double seconds = sec(end-start);
-    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds);
-    cuda_free(a_cl);
-    cuda_free(b_cl);
-    cuda_free(c_cl);
-    free(a);
-    free(b);
-    free(c);
-}
-
-
-void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
-{
-    srand(0);
-    float *a;
-    if(!TA) a = random_matrix(m,k);
-    else a = random_matrix(k,m);
-    int lda = (!TA)?k:m;
-    float *b;
-    if(!TB) b = random_matrix(k,n);
-    else b = random_matrix(n,k);
-    int ldb = (!TB)?n:k;
-
-    float *c = random_matrix(m,n);
-    float *c_gpu = random_matrix(m,n);
-    memset(c, 0, m*n*sizeof(float));
-    memset(c_gpu, 0, m*n*sizeof(float));
-    int i;
-    //pm(m,k,b);
-    gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
-    //printf("GPU\n");
-    //pm(m, n, c_gpu);
-
-    gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
-    //printf("\n\nCPU\n");
-    //pm(m, n, c);
-    double sse = 0;
-    for(i = 0; i < m*n; ++i) {
-        //printf("%f %f\n", c[i], c_gpu[i]);
-        sse += pow(c[i]-c_gpu[i], 2);
-    }
-    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g SSE\n",m,k,k,n, TA, TB, sse/(m*n));
-    free(a);
-    free(b);
-    free(c);
-    free(c_gpu);
-}
-
-int test_gpu_blas()
-{
-    /*
-       test_gpu_accuracy(0,0,10,576,75);
-
-       test_gpu_accuracy(0,0,17,10,10);
-       test_gpu_accuracy(1,0,17,10,10);
-       test_gpu_accuracy(0,1,17,10,10);
-       test_gpu_accuracy(1,1,17,10,10);
-
-       test_gpu_accuracy(0,0,1000,10,100);
-       test_gpu_accuracy(1,0,1000,10,100);
-       test_gpu_accuracy(0,1,1000,10,100);
-       test_gpu_accuracy(1,1,1000,10,100);
-
-       test_gpu_accuracy(0,0,10,10,10);
-
-       time_ongpu(0,0,64,2916,363);
-       time_ongpu(0,0,64,2916,363);
-       time_ongpu(0,0,64,2916,363);
-       time_ongpu(0,0,192,729,1600);
-       time_ongpu(0,0,384,196,1728);
-       time_ongpu(0,0,256,196,3456);
-       time_ongpu(0,0,256,196,2304);
-       time_ongpu(0,0,128,4096,12544);
-       time_ongpu(0,0,128,4096,4096);
-     */
-    time_ongpu(0,0,64,75,12544);
-    time_ongpu(0,0,64,75,12544);
-    time_ongpu(0,0,64,75,12544);
-    time_ongpu(0,0,64,576,12544);
-    time_ongpu(0,0,256,2304,784);
-    time_ongpu(1,1,2304,256,784);
-    time_ongpu(0,0,512,4608,196);
-    time_ongpu(1,1,4608,512,196);
-
-    return 0;
-}
-#endif
-
+#include "gemm.h"
+#include "utils.h"
+#include "cuda.h"
+#include <stdlib.h>
+#include <stdio.h>
+#include <math.h>
+
+void gemm_bin(int M, int N, int K, float ALPHA,
+        char  *A, int lda,
+        float *B, int ldb,
+        float *C, int ldc)
+{
+    int i,j,k;
+    for(i = 0; i < M; ++i){
+        for(k = 0; k < K; ++k){
+            char A_PART = A[i*lda+k];
+            if(A_PART){
+                for(j = 0; j < N; ++j){
+                    C[i*ldc+j] += B[k*ldb+j];
+                }
+            } else {
+                for(j = 0; j < N; ++j){
+                    C[i*ldc+j] -= B[k*ldb+j];
+                }
+            }
+        }
+    }
+}
+
+float *random_matrix(int rows, int cols)
+{
+    int i;
+    float *m = calloc(rows*cols, sizeof(float));
+    for(i = 0; i < rows*cols; ++i){
+        m[i] = (float)rand()/RAND_MAX;
+    }
+    return m;
+}
+
+void time_random_matrix(int TA, int TB, int m, int k, int n)
+{
+    float *a;
+    if(!TA) a = random_matrix(m,k);
+    else a = random_matrix(k,m);
+    int lda = (!TA)?k:m;
+    float *b;
+    if(!TB) b = random_matrix(k,n);
+    else b = random_matrix(n,k);
+    int ldb = (!TB)?n:k;
+
+    float *c = random_matrix(m,n);
+    int i;
+    clock_t start = clock(), end;
+    for(i = 0; i<10; ++i){
+        gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
+    }
+    end = clock();
+    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
+    free(a);
+    free(b);
+    free(c);
+}
+
+
+void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
+        float *A, int lda,
+        float *B, int ldb,
+        float BETA,
+        float *C, int ldc)
+{
+    gemm_cpu( TA,  TB,  M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
+}
+
+
+//--------------------------------------------
+// XNOR bitwise GEMM for binary neural network
+//--------------------------------------------
+
+#include <stdint.h>
+
+static inline unsigned char xnor(unsigned char a, unsigned char b) {
+    //return a == b;
+    return !(a^b);
+}
+
+// INT-32
+static inline uint32_t get_bit_int32(uint32_t const*const src, size_t index) {
+    size_t src_i = index / 32;
+    int src_shift = index % 32;
+    unsigned char val = (src[src_i] & (1 << src_shift)) > 0;
+    return val;
+}
+
+static inline uint32_t xnor_int32(uint32_t a, uint32_t b) {
+    return ~(a^b);
+}
+
+static inline uint64_t xnor_int64(uint64_t a, uint64_t b) {
+    return ~(a^b);
+}
+
+
+static inline uint32_t fill_bit_int32(char src) {
+    if (src == 0) return 0x00000000;
+    else return  0xFFFFFFFF;
+}
+
+static inline uint64_t fill_bit_int64(char src) {
+    if (src == 0) return 0x0000000000000000;
+    else return  0xFFFFFFFFFFFFFFFF;
+}
+
+void binary_int32_printf(uint32_t src) {
+    int i;
+    for (i = 0; i < 32; ++i) {
+        if (src & 1) printf("1");
+        else printf("0");
+        src = src >> 1;
+    }
+    printf("\n");
+}
+
+void binary_int64_printf(uint64_t src) {
+    int i;
+    for (i = 0; i < 64; ++i) {
+        if (src & 1) printf("1");
+        else printf("0");
+        src = src >> 1;
+    }
+    printf("\n");
+}
+
+/*
+void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
+    unsigned char *A, int lda,
+    unsigned char *B, int ldb,
+    float *C, int ldc, float *mean_arr)
+{
+    int *count_arr = calloc(M*N, sizeof(int));
+
+    int i, j, k;
+    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
+        for (k = 0; k < K; ++k) {   // l.size*l.size*l.c - one filter size [27 - 9216]
+            char a_bit = get_bit(A, i*lda + k);
+
+            for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+                char b_bit = get_bit(B, k*ldb + j);
+                count_arr[i*ldc + j] += xnor(a_bit, b_bit);
+            }
+        }
+    }
+
+    for (i = 0; i < M; ++i) {
+        float mean_val = mean_arr[i];
+        for (j = 0; j < N; ++j) {
+            C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
+        }
+    }
+    free(count_arr);
+}
+*/
+
+/*
+void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
+    unsigned char *A, int lda,
+    unsigned char *B, int ldb,
+    float *C, int ldc, float *mean_arr)
+{
+    int *count_arr = calloc(M*N, sizeof(int));
+
+    int i, j, k;
+    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
+        for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+            for (k = 0; k < K; ++k) {   // l.size*l.size*l.c - one filter size [27 - 9216]
+                char a_bit = get_bit(A, i*lda + k);
+                char b_bit = get_bit(B, j*ldb + k);
+                count_arr[i*ldc + j] += xnor(a_bit, b_bit);
+            }
+        }
+    }
+
+    for (i = 0; i < M; ++i) {
+        float mean_val = mean_arr[i];
+        for (j = 0; j < N; ++j) {
+            C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
+        }
+    }
+    free(count_arr);
+}
+*/
+
+/*
+void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
+    unsigned char *A, int lda,
+    unsigned char *B, int ldb,
+    float *C, int ldc, float *mean_arr)
+{
+    int *count_arr = calloc(M*N, sizeof(int));
+
+    int i, j, k, h;
+
+#pragma omp parallel for
+    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
+        for (k = 0; k < K; ++k) {   // l.size*l.size*l.c - one filter size [27 - 9216]
+            const char a_bit = get_bit(A, i*lda + k);
+            uint64_t a_bit64 = fill_bit_int64(a_bit);
+            int  k_ldb = k*ldb;
+
+            for (j = 0; j < N; j += 64) { // out_h*out_w - one channel output size [169 - 173056]
+                if ((N - j > 64) && (k_ldb % 8 == 0)) {
+                    uint64_t b_bit64 = *((uint64_t *)(B + (k_ldb + j) / 8));
+                    uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
+                    //printf("\n %d \n",__builtin_popcountll(c_bit64)); // gcc
+                    printf("\n %d \n", __popcnt64(c_bit64));    // msvs
+
+                    int h;
+                    for (h = 0; h < 64; ++h)
+                        if ((c_bit64 >> h) & 1) count_arr[i*ldc + j + h] += 1;
+
+                    //binary_int64_printf(a_bit64);
+                    //binary_int64_printf(b_bit64);
+                    //binary_int64_printf(c_bit64);
+                }
+                else {
+                    for (; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+                        char b_bit = get_bit(B, k_ldb + j);
+                        if (xnor(a_bit, b_bit)) count_arr[i*ldc + j] += 1;
+                    }
+                }
+
+            }
+        }
+    }
+
+    if (mean_arr) {
+        //int K_2 = K / 2;
+        for (i = 0; i < M; ++i) {
+            float mean_val = mean_arr[i];
+            //float mean_val2 = 2 * mean_val;
+            for (j = 0; j < N; ++j) {
+                C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
+                //C[i*ldc + j] = (count_arr[i*ldc + j] - K_2) *mean_val2;
+            }
+        }
+    }
+    else {
+        for (i = 0; i < M; ++i) {
+            for (j = 0; j < N; ++j) {
+                C[i*ldc + j] = count_arr[i*ldc + j] - K / 2;
+            }
+        }
+    }
+
+    free(count_arr);
+
+    //getchar();
+}
+*/
+
+
+/*
+void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
+    unsigned char *A, int lda,
+    unsigned char *B, int ldb,
+    float *C, int ldc, float *mean_arr)
+{
+    int i, j, k, h;
+
+#pragma omp parallel for
+    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
+        float mean_val = mean_arr[i];
+
+        for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+            int count = 0;
+
+            for (k = 0; k < K; k += 64) {   // l.size*l.size*l.c - one filter size [27 - 9216]
+                uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8));
+                uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
+                uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
+
+#ifdef WIN32
+                int tmp_count = __popcnt64(c_bit64);
+#else
+                int tmp_count = __builtin_popcountll(c_bit64);
+#endif
+
+                if (K - k < 64)  tmp_count = tmp_count - (64 - (K - k));    // remove extra bits
+                count += tmp_count;
+                //binary_int64_printf(c_bit64);
+                //printf(", count = %d \n\n", tmp_count);
+            }
+
+            C[i*ldc + j] = (2 * count - K) * mean_val;
+        }
+    }
+}
+*/
+
+//----------------------------
+
+
+#if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64)
+
+#define OSXSAVEFlag (1UL<<27)
+#define AVXFlag     ((1UL<<28)|OSXSAVEFlag)
+#define FMAFlag     ((1UL<<12)|AVXFlag|OSXSAVEFlag)
+#define CLMULFlag   ((1UL<< 1)|AVXFlag|OSXSAVEFlag)
+#define VAESFlag    ((1UL<<25)|AVXFlag|OSXSAVEFlag)
+
+#ifdef _WIN64
+#include <intrin.h>
+#include <ammintrin.h>
+#include <immintrin.h>
+#include <smmintrin.h>
+
+#else    // Linux GCC/Clang
+#include <x86intrin.h>
+#include <ammintrin.h>
+#include <immintrin.h>
+#include <smmintrin.h>
+#include <cpuid.h>
+
+void asm_cpuid(uint32_t* abcd, uint32_t eax)
+{
+    uint32_t ebx = 0, edx = 0, ecx = 0;
+
+    // EBX is saved to EDI and later restored
+    __asm__("movl %%ebx, %%edi;"
+        "cpuid;"
+        "xchgl %%ebx, %%edi;"
+        : "=D"(ebx),
+        "+a"(eax), "+c"(ecx), "=d"(edx));
+
+    abcd[0] = eax;
+    abcd[1] = ebx;
+    abcd[2] = ecx;
+    abcd[3] = edx;
+}
+
+#endif
+
+int simd_detect_x86(unsigned int idFeature)
+{
+    uint32_t regs[4];    // EAX, EBX, ECX, EDX;
+#ifdef _WIN32
+    __cpuid(regs, 0);
+    if (regs[0] > 1U) __cpuid(regs, 1);
+#else
+    __get_cpuid(0, &regs[0], &regs[1], &regs[2], &regs[3]);
+    if(regs[0] > 1U) __get_cpuid(1, &regs[0], &regs[1], &regs[2], &regs[3]);
+#endif
+
+    if ((regs[2] & idFeature) != idFeature)
+        return 0;
+    return 1;
+}
+
+int is_fma_avx() {
+    static int result = -1;
+    if (result == -1) {
+        result = simd_detect_x86(AVXFlag);
+        if (result == 1) printf(" Used AVX \n");
+        else printf(" Not used AVX \n");
+    }
+    return result;
+}
+
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide
+void gemm_nn(int M, int N, int K, float ALPHA,
+    float *A, int lda,
+    float *B, int ldb,
+    float *C, int ldc)
+{
+    int i, j, k;
+    if (is_fma_avx() == 1) {    // AVX
+        for (i = 0; i < M; ++i) {
+            for (k = 0; k < K; ++k) {
+                float A_PART = ALPHA*A[i*lda + k];
+                __m256 a256, b256, c256, result256;    // AVX
+                a256 = _mm256_set1_ps(A_PART);
+                for (j = 0; j < N - 8; j += 8) {
+                    b256 = _mm256_loadu_ps(&B[k*ldb + j]);
+                    c256 = _mm256_loadu_ps(&C[i*ldc + j]);
+                    // FMA - Intel Haswell (2013), AMD Piledriver (2012)
+                    //result256 = _mm256_fmadd_ps(a256, b256, c256);
+                    result256 = _mm256_mul_ps(a256, b256);
+                    result256 = _mm256_add_ps(result256, c256);
+                    _mm256_storeu_ps(&C[i*ldc + j], result256);
+                }
+
+                int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8;
+                for (j = prev_end; j < N; ++j)
+                    C[i*ldc + j] += A_PART*B[k*ldb + j];
+            }
+        }
+    }
+    else {
+        for (i = 0; i < M; ++i) {
+            for (k = 0; k < K; ++k) {
+                register float A_PART = ALPHA*A[i*lda + k];
+                for (j = 0; j < N; ++j) {
+                    C[i*ldc + j] += A_PART*B[k*ldb + j];
+                }
+                /* // SSE
+                __m128 a128, b128, c128, result128;    // SSE
+                a128 = _mm_set1_ps(A_PART);
+                for (j = 0; j < N - 4; j += 4) {
+                b128 = _mm_loadu_ps(&B[k*ldb + j]);
+                c128 = _mm_loadu_ps(&C[i*ldc + j]);
+                //result128 = _mm_fmadd_ps(a128, b128, c128);
+                result128 = _mm_mul_ps(a128, b128);
+                result128 = _mm_add_ps(result128, c128);
+                _mm_storeu_ps(&C[i*ldc + j], result128);
+                }
+
+                int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4;
+                for (j = prev_end; j < N; ++j){
+                C[i*ldc + j] += A_PART*B[k*ldb + j];
+                }
+                */
+            }
+        }
+    }
+}
+
+
+// http://graphics.stanford.edu/~seander/bithacks.html
+// https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register
+
+
+static inline int popcnt128(__m128i n) {
+    const __m128i n_hi = _mm_unpackhi_epi64(n, n);
+#ifdef _MSC_VER
+    return __popcnt64(_mm_cvtsi128_si64(n)) + __popcnt64(_mm_cvtsi128_si64(n_hi));
+#else
+    return __popcntq(_mm_cvtsi128_si64(n)) + __popcntq(_mm_cvtsi128_si64(n_hi));
+#endif
+}
+
+static inline int popcnt256(__m256i n) {
+    return popcnt128(_mm256_extractf128_si256(n, 0)) + popcnt128(_mm256_extractf128_si256(n, 1));
+}
+
+static inline __m256i count256(__m256i v) {
+    __m256i lookup =
+        _mm256_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2,
+            2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 1, 2, 2, 3,
+            1, 2, 2, 3, 2, 3, 3, 4);
+
+    __m256i low_mask = _mm256_set1_epi8(0x0f);
+
+    __m256i lo = _mm256_and_si256(v, low_mask);
+    __m256i hi = _mm256_and_si256(_mm256_srli_epi32(v, 4), low_mask);
+    __m256i popcnt1 = _mm256_shuffle_epi8(lookup, lo);
+    __m256i popcnt2 = _mm256_shuffle_epi8(lookup, hi);
+    __m256i total = _mm256_add_epi8(popcnt1, popcnt2);
+
+    return _mm256_sad_epu8(total, _mm256_setzero_si256());
+}

+static inline int popcnt256_custom(__m256i n) {
+    return _mm_popcnt_u64(n.m256i_i64[0]) +
+        _mm_popcnt_u64(n.m256i_i64[1]) +
+        _mm_popcnt_u64(n.m256i_i64[2]) +
+        _mm_popcnt_u64(n.m256i_i64[3]);
+}
+
+static inline void CSA(__m256i * h, __m256i * l, __m256i a, __m256i b, __m256i c)
+{
+    __m256i u = _mm256_xor_si256(a, b);
+    *h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c));
+    *l = _mm256_xor_si256(u, c);
+}
+
+static inline __m256i xnor256(__m256i a_bit256, __m256i b_bit256) {
+    __m256i all_1 = _mm256_set1_epi8(255);
+    __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);
+    __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1);
+
+    return c_bit256;
+
+}
+
+// 2 x faster than popcnt: https://arxiv.org/pdf/1611.07612.pdf
+// step = 16*256/8 = 512 bytes = 4096 bit (ldb, lda, bit_step, align - all should be aligned by 4096 bit)
+static inline uint64_t avx_hs_custom(__m256i * A, __m256i * B, uint64_t size) {
+    __m256i total = _mm256_setzero_si256();
+    __m256i ones = _mm256_setzero_si256();
+    __m256i twos = _mm256_setzero_si256();
+    __m256i fours = _mm256_setzero_si256();
+    __m256i eights = _mm256_setzero_si256();
+    __m256i sixteens = _mm256_setzero_si256();
+    __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
+
+    for (uint64_t i = 0; i < size; i += 16) {
+        //CSA(&twosA, &ones, ones, d[i], d[i + 1]);
+        CSA(&twosA, &ones, ones, xnor256(A[i], B[i]), xnor256(A[i + 1], B[i + 1]));
+        CSA(&twosB, &ones, ones, xnor256(A[i + 2], B[i + 2]), xnor256(A[i + 3], B[i + 3]));
+        CSA(&foursA, &twos, twos, twosA, twosB);
+        CSA(&twosA, &ones, ones, xnor256(A[i + 4], B[i + 4]), xnor256(A[i + 5], B[i + 5]));
+        CSA(&twosB, &ones, ones, xnor256(A[i + 6], B[i + 6]), xnor256(A[i + 7], B[i + 7]));
+        CSA(&foursB, &twos, twos, twosA, twosB);
+        CSA(&eightsA, &fours, fours, foursA, foursB);
+        CSA(&twosA, &ones, ones, xnor256(A[i + 8], B[i + 8]), xnor256(A[i + 9], B[i + 9]));
+        CSA(&twosB, &ones, ones, xnor256(A[i + 10], B[i + 10]), xnor256(A[i + 11], B[i + 11]));
+        CSA(&foursA, &twos, twos, twosA, twosB);
+        CSA(&twosA, &ones, ones, xnor256(A[i + 12], B[i + 12]), xnor256(A[i + 13], B[i + 13]));
+        CSA(&twosB, &ones, ones, xnor256(A[i + 14], B[i + 14]), xnor256(A[i + 15], B[i + 15]));
+        CSA(&foursB, &twos, twos, twosA, twosB);
+        CSA(&eightsB, &fours, fours, foursA, foursB);
+        CSA(&sixteens, &eights, eights, eightsA, eightsB);
+
+        total = _mm256_add_epi64(total, count256(sixteens));
+    }
+    total = _mm256_slli_epi64(total, 4);
+    total = _mm256_add_epi64(total,
+        _mm256_slli_epi64(count256(eights), 3));
+    total = _mm256_add_epi64(total,
+        _mm256_slli_epi64(count256(fours), 2));
+    total = _mm256_add_epi64(total,
+        _mm256_slli_epi64(count256(twos), 1));
+    total = _mm256_add_epi64(total, count256(ones));
+
+    return total.m256i_i64[0] +
+            total.m256i_i64[1] +
+            total.m256i_i64[2] +
+            total.m256i_i64[3];
+
+    //return _mm256_extract_epi64(total, 0)
+    //    + _mm256_extract_epi64(total, 1)
+    //    + _mm256_extract_epi64(total, 2)
+    //    + _mm256_extract_epi64(total, 3);
+}

+
+void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
+    unsigned char *A, int lda,
+    unsigned char *B, int ldb,
+    float *C, int ldc, float *mean_arr)
+{
+    __m256i all_1 = _mm256_set1_epi8(255);
+    int i, j, k;
+
+    //printf("\n M = %d, N = %d, K = %d, ldb = %d, M*ldb/8 = %d, N*ldb/8= %d \n", M, N, K, ldb, M*ldb/8, N*ldb/8);
+    //if (K > 4096)  printf("!!!avx_hs!!! \n\n");
+
+    #pragma omp parallel for
+    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
+        float mean_val = mean_arr[i];
+
+        for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+            int count = 0;
+            const int bit_step = 256;
+
+
+            int hs_count = 0;
+            if (K > 4096) {
+                hs_count = avx_hs_custom(A + (i*lda) / 8, B + (j*ldb) / 8, K / 256);
+
+                int local_bit_step = 4096;
+
+                int f1 = (K % local_bit_step == 0) ? 0 : (local_bit_step - (K % local_bit_step));
+                hs_count = hs_count - f1;    // remove extra bits
+                count = hs_count;
+            }
+            else {
+                for (k = 0; k < K; k += bit_step) {   // l.size*l.size*l.c - one filter size [27 - 9216]
+
+                    //__m128i a_bit128 = _mm_loadu_si128((__m128i *)(A + (i*lda + k) / 8));
+                    //__m128i b_bit128 = _mm_loadu_si128((__m128i *)(B + (j*ldb + k) / 8));
+                    //__m128i xor128 = _mm_xor_si128(a_bit128, b_bit128);
+                    //__m128i c_bit128 = _mm_andnot_si128(xor128, all_1);
+                    //int tmp_count = popcnt128(c_bit128);
+
+                    __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8));
+                    __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8));
+                    __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);
+                    __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); //we can do NOT for wegihts once and do not do this NOT
+                    int tmp_count = popcnt256(c_bit256);
+                    //int tmp_count = popcnt256_custom(c_bit256);
+                    count += tmp_count;
+
+                    //binary_int64_printf(c_bit64);
+                    //printf(", count = %d \n\n", tmp_count);
+                }
+
+                int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
+                count = count - f1;    // remove extra bits
+           }
+
+            C[i*ldc + j] = (2 * count - K) * mean_val;
+        }
+    }
+}
+
+
+void float_to_bit(float *src, unsigned char *dst, size_t size)
+{
+    size_t dst_size = size / 8 + 1;
+    memset(dst, 0, dst_size);
+
+    size_t i;
+    __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
+
+    for (i = 0; i < size; i+=8)
+    {
+        __m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i]));
+        __m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats
+
+        uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1
+        mask = ~mask;   // inverse mask,  (val >= 0) ? 1 : 0
+
+        dst[i / 8] = mask;
+    }
+}
+
+#else
+
+void gemm_nn(int M, int N, int K, float ALPHA,
+    float *A, int lda,
+    float *B, int ldb,
+    float *C, int ldc)
+{
+    int i, j, k;
+    for (i = 0; i < M; ++i) {
+        for (k = 0; k < K; ++k) {
+            register float A_PART = ALPHA*A[i*lda + k];
+            for (j = 0; j < N; ++j) {
+                C[i*ldc + j] += A_PART*B[k*ldb + j];
+            }
+        }
+    }
+}
+
+void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
+    unsigned char *A, int lda,
+    unsigned char *B, int ldb,
+    float *C, int ldc, float *mean_arr)
+{
+    int i, j, k, h;
+
+#pragma omp parallel for
+    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
+        float mean_val = mean_arr[i];
+
+        for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+            int count = 0;
+
+            for (k = 0; k < K; k += 64) {   // l.size*l.size*l.c - one filter size [27 - 9216]
+                uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8));
+                uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
+                uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
+
+#ifdef WIN32
+                int tmp_count = __popcnt64(c_bit64);
+#else
+                int tmp_count = __builtin_popcountll(c_bit64);
+#endif
+
+                if (K - k < 64)  tmp_count = tmp_count - (64 - (K - k));    // remove extra bits
+                count += tmp_count;
+                //binary_int64_printf(c_bit64);
+                //printf(", count = %d \n\n", tmp_count);
+            }
+
+            C[i*ldc + j] = (2 * count - K) * mean_val;
+        }
+    }
+}
+
+void float_to_bit(float *src, unsigned char *dst, size_t size)
+{
+    size_t dst_size = size / 8 + 1;
+    memset(dst, 0, dst_size);
+
+    size_t i;
+    char *byte_arr = calloc(size, sizeof(char));
+    for (i = 0; i < size; ++i) {
+        if (src[i] > 0) byte_arr[i] = 1;
+    }
+
+    //for (i = 0; i < size; ++i) {
+    //    dst[i / 8] |= byte_arr[i] << (i % 8);
+    //}
+
+    for (i = 0; i < size; i += 8) {
+        char dst_tmp = 0;
+        dst_tmp |= byte_arr[i + 0] << 0;
+        dst_tmp |= byte_arr[i + 1] << 1;
+        dst_tmp |= byte_arr[i + 2] << 2;
+        dst_tmp |= byte_arr[i + 3] << 3;
+        dst_tmp |= byte_arr[i + 4] << 4;
+        dst_tmp |= byte_arr[i + 5] << 5;
+        dst_tmp |= byte_arr[i + 6] << 6;
+        dst_tmp |= byte_arr[i + 7] << 7;
+        dst[i / 8] = dst_tmp;
+    }
+    free(byte_arr);
+}
+#endif    // __x86_64
+
+void gemm_nt(int M, int N, int K, float ALPHA,
+        float *A, int lda,
+        float *B, int ldb,
+        float *C, int ldc)
+{
+    int i,j,k;
+    for(i = 0; i < M; ++i){
+        for(j = 0; j < N; ++j){
+            register float sum = 0;
+            for(k = 0; k < K; ++k){
+                sum += ALPHA*A[i*lda+k]*B[j*ldb + k];
+            }
+            C[i*ldc+j] += sum;
+        }
+    }
+}
+
+void gemm_tn(int M, int N, int K, float ALPHA,
+        float *A, int lda,
+        float *B, int ldb,
+        float *C, int ldc)
+{
+    int i,j,k;
+    for(i = 0; i < M; ++i){
+        for(k = 0; k < K; ++k){
+            register float A_PART = ALPHA*A[k*lda+i];
+            for(j = 0; j < N; ++j){
+                C[i*ldc+j] += A_PART*B[k*ldb+j];
+            }
+        }
+    }
+}
+
+void gemm_tt(int M, int N, int K, float ALPHA,
+        float *A, int lda,
+        float *B, int ldb,
+        float *C, int ldc)
+{
+    int i,j,k;
+    for(i = 0; i < M; ++i){
+        for(j = 0; j < N; ++j){
+            register float sum = 0;
+            for(k = 0; k < K; ++k){
+                sum += ALPHA*A[i+k*lda]*B[k+j*ldb];
+            }
+            C[i*ldc+j] += sum;
+        }
+    }
+}
+
+
+void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,
+        float *A, int lda,
+        float *B, int ldb,
+        float BETA,
+        float *C, int ldc)
+{
+    //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc);
+    if (BETA != 1){
+        int i, j;
+        for(i = 0; i < M; ++i){
+            for(j = 0; j < N; ++j){
+                C[i*ldc + j] *= BETA;
+            }
+        }
+    }
+
+    int t;
+    #pragma omp parallel for
+    for (t = 0; t < M; ++t) {
+        if (!TA && !TB)
+            gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
+        else if (TA && !TB)
+            gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
+        else if (!TA && TB)
+            gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
+        else
+            gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
+    }
+}
+
+#ifdef GPU
+
+#include <math.h>
+
+void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
+        float *A_gpu, int lda,
+        float *B_gpu, int ldb,
+        float BETA,
+        float *C_gpu, int ldc)
+{
+    cublasHandle_t handle = blas_handle();
+    cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream());
+    cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N),
+            (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc);
+    check_error(status);
+}
+
+void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
+        float *A, int lda,
+        float *B, int ldb,
+        float BETA,
+        float *C, int ldc)
+{
+    float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M));
+    float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K));
+    float *C_gpu = cuda_make_array(C, ldc*M);
+
+    gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
+
+    cuda_pull_array(C_gpu, C, ldc*M);
+    cuda_free(A_gpu);
+    cuda_free(B_gpu);
+    cuda_free(C_gpu);
+}
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <time.h>
+
+void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
+{
+    float *a;
+    if(!TA) a = random_matrix(m,k);
+    else a = random_matrix(k,m);
+    int lda = (!TA)?k:m;
+    float *b;
+    if(!TB) b = random_matrix(k,n);
+    else b = random_matrix(n,k);
+    int ldb = (!TB)?n:k;
+
+    float *c = random_matrix(m,n);
+    int i;
+    clock_t start = clock(), end;
+    for(i = 0; i<32; ++i){
+        gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
+    }
+    end = clock();
+    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
+    free(a);
+    free(b);
+    free(c);
+}
+
+void time_ongpu(int TA, int TB, int m, int k, int n)
+{
+    int iter = 10;
+    float *a = random_matrix(m,k);
+    float *b = random_matrix(k,n);
+
+    int lda = (!TA)?k:m;
+    int ldb = (!TB)?n:k;
+
+    float *c = random_matrix(m,n);
+
+    float *a_cl = cuda_make_array(a, m*k);
+    float *b_cl = cuda_make_array(b, k*n);
+    float *c_cl = cuda_make_array(c, m*n);
+
+    int i;
+    clock_t start = clock(), end;
+    for(i = 0; i<iter; ++i){
+        gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
+        cudaThreadSynchronize();
+    }
+    double flop = ((double)m)*n*(2.*k + 2.)*iter;
+    double gflop = flop/pow(10., 9);
+    end = clock();
+    double seconds = sec(end-start);
+    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds);
+    cuda_free(a_cl);
+    cuda_free(b_cl);
+    cuda_free(c_cl);
+    free(a);
+    free(b);
+    free(c);
+}
+
+
+void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
+{
+    srand(0);
+    float *a;
+    if(!TA) a = random_matrix(m,k);
+    else a = random_matrix(k,m);
+    int lda = (!TA)?k:m;
+    float *b;
+    if(!TB) b = random_matrix(k,n);
+    else b = random_matrix(n,k);
+    int ldb = (!TB)?n:k;
+
+    float *c = random_matrix(m,n);
+    float *c_gpu = random_matrix(m,n);
+    memset(c, 0, m*n*sizeof(float));
+    memset(c_gpu, 0, m*n*sizeof(float));
+    int i;
+    //pm(m,k,b);
+    gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
+    //printf("GPU\n");
+    //pm(m, n, c_gpu);
+
+    gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
+    //printf("\n\nCPU\n");
+    //pm(m, n, c);
+    double sse = 0;
+    for(i = 0; i < m*n; ++i) {
+        //printf("%f %f\n", c[i], c_gpu[i]);
+        sse += pow(c[i]-c_gpu[i], 2);
+    }
+    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g SSE\n",m,k,k,n, TA, TB, sse/(m*n));
+    free(a);
+    free(b);
+    free(c);
+    free(c_gpu);
+}
+
+int test_gpu_blas()
+{
+    /*
+       test_gpu_accuracy(0,0,10,576,75);
+
+       test_gpu_accuracy(0,0,17,10,10);
+       test_gpu_accuracy(1,0,17,10,10);
+       test_gpu_accuracy(0,1,17,10,10);
+       test_gpu_accuracy(1,1,17,10,10);
+
+       test_gpu_accuracy(0,0,1000,10,100);
+       test_gpu_accuracy(1,0,1000,10,100);
+       test_gpu_accuracy(0,1,1000,10,100);
+       test_gpu_accuracy(1,1,1000,10,100);
+
+       test_gpu_accuracy(0,0,10,10,10);
+
+       time_ongpu(0,0,64,2916,363);
+       time_ongpu(0,0,64,2916,363);
+       time_ongpu(0,0,64,2916,363);
+       time_ongpu(0,0,192,729,1600);
+       time_ongpu(0,0,384,196,1728);
+       time_ongpu(0,0,256,196,3456);
+       time_ongpu(0,0,256,196,2304);
+       time_ongpu(0,0,128,4096,12544);
+       time_ongpu(0,0,128,4096,4096);
+     */
+    time_ongpu(0,0,64,75,12544);
+    time_ongpu(0,0,64,75,12544);
+    time_ongpu(0,0,64,75,12544);
+    time_ongpu(0,0,64,576,12544);
+    time_ongpu(0,0,256,2304,784);
+    time_ongpu(1,1,2304,256,784);
+    time_ongpu(0,0,512,4608,196);
+    time_ongpu(1,1,4608,512,196);
+
+    return 0;
+}
+#endif
+

--
Gitblit v1.10.0