From a2f3644e87c11c222f86aa2aeb0e31d858ebb024 Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Sat, 21 Apr 2018 20:56:46 +0000
Subject: [PATCH] Merge pull request #675 from IlyaOvodov/Flip_Fix

---
 src/parser.c |  238 ++++++++++++++++++++++++++++++++++++++++++++--------------
 1 files changed, 179 insertions(+), 59 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index 26f45d3..7441ae2 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -2,33 +2,37 @@
 #include <string.h>
 #include <stdlib.h>
 
-#include "blas.h"
-#include "parser.h"
-#include "assert.h"
-#include "activations.h"
-#include "crop_layer.h"
-#include "cost_layer.h"
-#include "convolutional_layer.h"
 #include "activation_layer.h"
-#include "normalization_layer.h"
-#include "batchnorm_layer.h"
-#include "connected_layer.h"
-#include "rnn_layer.h"
-#include "gru_layer.h"
-#include "crnn_layer.h"
-#include "maxpool_layer.h"
-#include "reorg_layer.h"
-#include "softmax_layer.h"
-#include "dropout_layer.h"
-#include "detection_layer.h"
-#include "region_layer.h"
+#include "activations.h"
+#include "assert.h"
 #include "avgpool_layer.h"
+#include "batchnorm_layer.h"
+#include "blas.h"
+#include "connected_layer.h"
+#include "convolutional_layer.h"
+#include "cost_layer.h"
+#include "crnn_layer.h"
+#include "crop_layer.h"
+#include "detection_layer.h"
+#include "dropout_layer.h"
+#include "gru_layer.h"
+#include "list.h"
 #include "local_layer.h"
+#include "maxpool_layer.h"
+#include "normalization_layer.h"
+#include "option_list.h"
+#include "parser.h"
+#include "region_layer.h"
+#include "reorg_layer.h"
+#include "reorg_old_layer.h"
+#include "rnn_layer.h"
 #include "route_layer.h"
 #include "shortcut_layer.h"
-#include "list.h"
-#include "option_list.h"
+#include "softmax_layer.h"
 #include "utils.h"
+#include "upsample_layer.h"
+#include "yolo_layer.h"
+#include <stdint.h>
 
 typedef struct{
     char *type;
@@ -45,6 +49,7 @@
     if (strcmp(type, "[cost]")==0) return COST;
     if (strcmp(type, "[detection]")==0) return DETECTION;
     if (strcmp(type, "[region]")==0) return REGION;
+	if (strcmp(type, "[yolo]") == 0) return YOLO;
     if (strcmp(type, "[local]")==0) return LOCAL;
     if (strcmp(type, "[conv]")==0
             || strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL;
@@ -59,6 +64,7 @@
     if (strcmp(type, "[max]")==0
             || strcmp(type, "[maxpool]")==0) return MAXPOOL;
     if (strcmp(type, "[reorg]")==0) return REORG;
+	if (strcmp(type, "[reorg_old]") == 0) return REORG_OLD;
     if (strcmp(type, "[avg]")==0
             || strcmp(type, "[avgpool]")==0) return AVGPOOL;
     if (strcmp(type, "[dropout]")==0) return DROPOUT;
@@ -68,6 +74,7 @@
     if (strcmp(type, "[soft]")==0
             || strcmp(type, "[softmax]")==0) return SOFTMAX;
     if (strcmp(type, "[route]")==0) return ROUTE;
+	if (strcmp(type, "[upsample]") == 0) return UPSAMPLE;
     return BLANK;
 }
 
@@ -232,19 +239,65 @@
     return layer;
 }
 
-int *read_map(char *filename)
+int *parse_yolo_mask(char *a, int *num)
 {
-    int n = 0;
-    int *map = 0;
-    char *str;
-    FILE *file = fopen(filename, "r");
-    if(!file) file_error(filename);
-    while((str=fgetl(file))){
-        ++n;
-        map = realloc(map, n*sizeof(int));
-        map[n-1] = atoi(str);
-    }
-    return map;
+	int *mask = 0;
+	if (a) {
+		int len = strlen(a);
+		int n = 1;
+		int i;
+		for (i = 0; i < len; ++i) {
+			if (a[i] == ',') ++n;
+		}
+		mask = calloc(n, sizeof(int));
+		for (i = 0; i < n; ++i) {
+			int val = atoi(a);
+			mask[i] = val;
+			a = strchr(a, ',') + 1;
+		}
+		*num = n;
+	}
+	return mask;
+}
+
+layer parse_yolo(list *options, size_params params)
+{
+	int classes = option_find_int(options, "classes", 20);
+	int total = option_find_int(options, "num", 1);
+	int num = total;
+
+	char *a = option_find_str(options, "mask", 0);
+	int *mask = parse_yolo_mask(a, &num);
+	int max_boxes = option_find_int_quiet(options, "max", 30);
+	layer l = make_yolo_layer(params.batch, params.w, params.h, num, total, mask, classes, max_boxes);
+	assert(l.outputs == params.inputs);
+
+	//l.max_boxes = option_find_int_quiet(options, "max", 90);
+	l.jitter = option_find_float(options, "jitter", .2);
+	l.focal_loss = option_find_int_quiet(options, "focal_loss", 0);
+
+	l.ignore_thresh = option_find_float(options, "ignore_thresh", .5);
+	l.truth_thresh = option_find_float(options, "truth_thresh", 1);
+	l.random = option_find_int_quiet(options, "random", 0);
+
+	char *map_file = option_find_str(options, "map", 0);
+	if (map_file) l.map = read_map(map_file);
+
+	a = option_find_str(options, "anchors", 0);
+	if (a) {
+		int len = strlen(a);
+		int n = 1;
+		int i;
+		for (i = 0; i < len; ++i) {
+			if (a[i] == ',') ++n;
+		}
+		for (i = 0; i < n && i < total*2; ++i) {
+			float bias = atof(a);
+			l.biases[i] = bias;
+			a = strchr(a, ',') + 1;
+		}
+	}
+	return l;
 }
 
 layer parse_region(list *options, size_params params)
@@ -252,26 +305,29 @@
     int coords = option_find_int(options, "coords", 4);
     int classes = option_find_int(options, "classes", 20);
     int num = option_find_int(options, "num", 1);
+	int max_boxes = option_find_int_quiet(options, "max", 30);
 
-    params.w = option_find_int(options, "side", params.w);
-    params.h = option_find_int(options, "side", params.h);
-
-    layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords);
+    layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords, max_boxes);
     assert(l.outputs == params.inputs);
 
     l.log = option_find_int_quiet(options, "log", 0);
     l.sqrt = option_find_int_quiet(options, "sqrt", 0);
 
     l.softmax = option_find_int(options, "softmax", 0);
-    l.max_boxes = option_find_int_quiet(options, "max",30);
+	l.focal_loss = option_find_int_quiet(options, "focal_loss", 0);
+    //l.max_boxes = option_find_int_quiet(options, "max",30);
     l.jitter = option_find_float(options, "jitter", .2);
     l.rescore = option_find_int_quiet(options, "rescore",0);
 
     l.thresh = option_find_float(options, "thresh", .5);
+    l.classfix = option_find_int_quiet(options, "classfix", 0);
+    l.absolute = option_find_int_quiet(options, "absolute", 0);
+    l.random = option_find_int_quiet(options, "random", 0);
 
     l.coord_scale = option_find_float(options, "coord_scale", 1);
     l.object_scale = option_find_float(options, "object_scale", 1);
     l.noobject_scale = option_find_float(options, "noobject_scale", 1);
+	l.mask_scale = option_find_float(options, "mask_scale", 1);
     l.class_scale = option_find_float(options, "class_scale", 1);
     l.bias_match = option_find_int_quiet(options, "bias_match",0);
 
@@ -288,7 +344,7 @@
         for(i = 0; i < len; ++i){
             if (a[i] == ',') ++n;
         }
-        for(i = 0; i < n; ++i){
+        for(i = 0; i < n && i < num*2; ++i){
             float bias = atof(a);
             l.biases[i] = bias;
             a = strchr(a, ',')+1;
@@ -357,6 +413,7 @@
 layer parse_reorg(list *options, size_params params)
 {
     int stride = option_find_int(options, "stride",1);
+    int reverse = option_find_int_quiet(options, "reverse",0);
 
     int batch,h,w,c;
     h = params.h;
@@ -365,10 +422,27 @@
     batch=params.batch;
     if(!(h && w && c)) error("Layer before reorg layer must output image.");
 
-    layer layer = make_reorg_layer(batch,w,h,c,stride);
+    layer layer = make_reorg_layer(batch,w,h,c,stride,reverse);
     return layer;
 }
 
+layer parse_reorg_old(list *options, size_params params)
+{
+	printf("\n reorg_old \n");
+	int stride = option_find_int(options, "stride", 1);
+	int reverse = option_find_int_quiet(options, "reverse", 0);
+
+	int batch, h, w, c;
+	h = params.h;
+	w = params.w;
+	c = params.c;
+	batch = params.batch;
+	if (!(h && w && c)) error("Layer before reorg layer must output image.");
+
+	layer layer = make_reorg_old_layer(batch, w, h, c, stride, reverse);
+	return layer;
+}
+
 maxpool_layer parse_maxpool(list *options, size_params params)
 {
     int stride = option_find_int(options, "stride",1);
@@ -460,6 +534,15 @@
     return l;
 }
 
+layer parse_upsample(list *options, size_params params, network net)
+{
+
+	int stride = option_find_int(options, "stride", 2);
+	layer l = make_upsample_layer(params.batch, params.w, params.h, params.c, stride);
+	l.scale = option_find_float_quiet(options, "scale", 1);
+	return l;
+}
+
 route_layer parse_route(list *options, size_params params, network net)
 {
     char *l = option_find(options, "layers");   
@@ -539,18 +622,24 @@
     net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
     net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2);
     net->min_crop = option_find_int_quiet(options, "min_crop",net->w);
+	net->flip = option_find_int_quiet(options, "flip", 1);
 
+	net->small_object = option_find_int_quiet(options, "small_object", 0);
     net->angle = option_find_float_quiet(options, "angle", 0);
     net->aspect = option_find_float_quiet(options, "aspect", 1);
     net->saturation = option_find_float_quiet(options, "saturation", 1);
     net->exposure = option_find_float_quiet(options, "exposure", 1);
     net->hue = option_find_float_quiet(options, "hue", 0);
+	net->power = option_find_float_quiet(options, "power", 4);
 
     if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
 
     char *policy_s = option_find_str(options, "policy", "constant");
     net->policy = get_policy(policy_s);
     net->burn_in = option_find_int_quiet(options, "burn_in", 0);
+#ifdef CUDNN_HALF
+	net->burn_in = 0;
+#endif
     if(net->policy == STEP){
         net->step = option_find_int(options, "step", 1);
         net->scale = option_find_float(options, "scale", 1);
@@ -584,7 +673,7 @@
         net->gamma = option_find_float(options, "gamma", 1);
         net->step = option_find_int(options, "step", 1);
     } else if (net->policy == POLY || net->policy == RANDOM){
-        net->power = option_find_float(options, "power", 1);
+        //net->power = option_find_float(options, "power", 1);
     }
     net->max_batches = option_find_int(options, "max_batches", 0);
 }
@@ -597,6 +686,11 @@
 
 network parse_network_cfg(char *filename)
 {
+	return parse_network_cfg_custom(filename, 0);
+}
+
+network parse_network_cfg_custom(char *filename, int batch)
+{
     list *sections = read_cfg(filename);
     node *n = sections->front;
     if(!n) error("Config file has no sections");
@@ -613,6 +707,7 @@
     params.w = net.w;
     params.c = net.c;
     params.inputs = net.inputs;
+	if (batch > 0) net.batch = batch;
     params.batch = net.batch;
     params.time_steps = net.time_steps;
     params.net = net;
@@ -621,9 +716,10 @@
     n = n->next;
     int count = 0;
     free_section(s);
+    fprintf(stderr, "layer     filters    size              input                output\n");
     while(n){
         params.index = count;
-        fprintf(stderr, "%d: ", count);
+        fprintf(stderr, "%5d ", count);
         s = (section *)n->val;
         options = s->options;
         layer l = {0};
@@ -648,6 +744,8 @@
             l = parse_cost(options, params);
         }else if(lt == REGION){
             l = parse_region(options, params);
+		}else if (lt == YOLO) {
+			l = parse_yolo(options, params);
         }else if(lt == DETECTION){
             l = parse_detection(options, params);
         }else if(lt == SOFTMAX){
@@ -660,11 +758,15 @@
         }else if(lt == MAXPOOL){
             l = parse_maxpool(options, params);
         }else if(lt == REORG){
-            l = parse_reorg(options, params);
+            l = parse_reorg(options, params);		}
+		else if (lt == REORG_OLD) {
+			l = parse_reorg_old(options, params);
         }else if(lt == AVGPOOL){
             l = parse_avgpool(options, params);
         }else if(lt == ROUTE){
             l = parse_route(options, params, net);
+		}else if (lt == UPSAMPLE) {
+			l = parse_upsample(options, params, net);
         }else if(lt == SHORTCUT){
             l = parse_shortcut(options, params, net);
         }else if(lt == DROPOUT){
@@ -678,6 +780,8 @@
         }else{
             fprintf(stderr, "Type not recognized: %s\n", s->type);
         }
+        l.onlyforward = option_find_int_quiet(options, "onlyforward", 0);
+        l.stopbackward = option_find_int_quiet(options, "stopbackward", 0);
         l.dontload = option_find_int_quiet(options, "dontload", 0);
         l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
         option_unused(options);
@@ -711,6 +815,8 @@
     return net;
 }
 
+
+
 list *read_cfg(char *filename)
 {
     FILE *file = fopen(filename, "r");
@@ -839,7 +945,7 @@
     }
 #endif
     fprintf(stderr, "Saving weights to %s\n", filename);
-    FILE *fp = fopen(filename, "w");
+    FILE *fp = fopen(filename, "wb");
     if(!fp) file_error(filename);
 
     int major = 0;
@@ -979,23 +1085,28 @@
         //return;
     }
     int num = l.n*l.c*l.size*l.size;
-    if(0){
-        fread(l.biases + ((l.n != 1374)?0:5), sizeof(float), l.n, fp);
-        if (l.batch_normalize && (!l.dontloadscales)){
-            fread(l.scales + ((l.n != 1374)?0:5), sizeof(float), l.n, fp);
-            fread(l.rolling_mean + ((l.n != 1374)?0:5), sizeof(float), l.n, fp);
-            fread(l.rolling_variance + ((l.n != 1374)?0:5), sizeof(float), l.n, fp);
+    fread(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize && (!l.dontloadscales)){
+        fread(l.scales, sizeof(float), l.n, fp);
+        fread(l.rolling_mean, sizeof(float), l.n, fp);
+        fread(l.rolling_variance, sizeof(float), l.n, fp);
+        if(0){
+            int i;
+            for(i = 0; i < l.n; ++i){
+                printf("%g, ", l.rolling_mean[i]);
+            }
+            printf("\n");
+            for(i = 0; i < l.n; ++i){
+                printf("%g, ", l.rolling_variance[i]);
+            }
+            printf("\n");
         }
-        fread(l.weights + ((l.n != 1374)?0:5*l.c*l.size*l.size), sizeof(float), num, fp);
-    }else{
-        fread(l.biases, sizeof(float), l.n, fp);
-        if (l.batch_normalize && (!l.dontloadscales)){
-            fread(l.scales, sizeof(float), l.n, fp);
-            fread(l.rolling_mean, sizeof(float), l.n, fp);
-            fread(l.rolling_variance, sizeof(float), l.n, fp);
+        if(0){
+            fill_cpu(l.n, 0, l.rolling_mean, 1);
+            fill_cpu(l.n, 0, l.rolling_variance, 1);
         }
-        fread(l.weights, sizeof(float), num, fp);
     }
+    fread(l.weights, sizeof(float), num, fp);
     if(l.adam){
         fread(l.m, sizeof(float), num, fp);
         fread(l.v, sizeof(float), num, fp);
@@ -1031,7 +1142,16 @@
     fread(&major, sizeof(int), 1, fp);
     fread(&minor, sizeof(int), 1, fp);
     fread(&revision, sizeof(int), 1, fp);
-    fread(net->seen, sizeof(int), 1, fp);
+	if ((major * 10 + minor) >= 2) {
+		printf("\n seen 64 \n");
+		uint64_t iseen = 0;
+		fread(&iseen, sizeof(uint64_t), 1, fp);
+		*net->seen = iseen;
+	}
+	else {
+		printf("\n seen 32 \n");
+		fread(net->seen, sizeof(int), 1, fp);
+	}
     int transpose = (major > 1000) || (minor > 1000);
 
     int i;

--
Gitblit v1.10.0