From a392bbd0c957a00e3782c96e7ced84a29ff9dd88 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 15 Mar 2016 05:33:02 +0000
Subject: [PATCH] Play along w/ alphago

---
 src/detection_layer.c |  310 +++++++++++++++++++++++++++++----------------------
 1 files changed, 174 insertions(+), 136 deletions(-)

diff --git a/src/detection_layer.c b/src/detection_layer.c
index 27a4daf..90b672b 100644
--- a/src/detection_layer.c
+++ b/src/detection_layer.c
@@ -2,182 +2,220 @@
 #include "activations.h"
 #include "softmax_layer.h"
 #include "blas.h"
+#include "box.h"
 #include "cuda.h"
+#include "utils.h"
 #include <stdio.h>
+#include <assert.h>
+#include <string.h>
 #include <stdlib.h>
 
-int get_detection_layer_locations(detection_layer layer)
+detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore)
 {
-    return layer.inputs / (layer.classes+layer.coords+layer.rescore+layer.background);
-}
+    detection_layer l = {0};
+    l.type = DETECTION;
 
-int get_detection_layer_output_size(detection_layer layer)
-{
-    return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords);
-}
-
-detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance)
-{
-    detection_layer *layer = calloc(1, sizeof(detection_layer));
-    
-    layer->batch = batch;
-    layer->inputs = inputs;
-    layer->classes = classes;
-    layer->coords = coords;
-    layer->rescore = rescore;
-    layer->nuisance = nuisance;
-    layer->background = background;
-    int outputs = get_detection_layer_output_size(*layer);
-    layer->output = calloc(batch*outputs, sizeof(float));
-    layer->delta = calloc(batch*outputs, sizeof(float));
-    #ifdef GPU
-    layer->output_gpu = cuda_make_array(0, batch*outputs);
-    layer->delta_gpu = cuda_make_array(0, batch*outputs);
-    #endif
+    l.n = n;
+    l.batch = batch;
+    l.inputs = inputs;
+    l.classes = classes;
+    l.coords = coords;
+    l.rescore = rescore;
+    l.side = side;
+    assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs);
+    l.cost = calloc(1, sizeof(float));
+    l.outputs = l.inputs;
+    l.truths = l.side*l.side*(1+l.coords+l.classes);
+    l.output = calloc(batch*l.outputs, sizeof(float));
+    l.delta = calloc(batch*l.outputs, sizeof(float));
+#ifdef GPU
+    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
+    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
+#endif
 
     fprintf(stderr, "Detection Layer\n");
     srand(0);
 
-    return layer;
+    return l;
 }
 
-void dark_zone(detection_layer layer, int class, int start, network_state state)
+void forward_detection_layer(const detection_layer l, network_state state)
 {
-    int index = start+layer.background+class;
-    int size = layer.classes+layer.coords+layer.background;
-    int location = (index%(7*7*size)) / size ;
-    int r = location / 7;
-    int c = location % 7;
-    int dr, dc;
-    for(dr = -1; dr <= 1; ++dr){
-        for(dc = -1; dc <= 1; ++dc){
-            if(!(dr || dc)) continue;
-            if((r + dr) > 6 || (r + dr) < 0) continue;
-            if((c + dc) > 6 || (c + dc) < 0) continue;
-            int di = (dr*7 + dc) * size;
-            if(state.truth[index+di]) continue;
-            layer.output[index + di] = 0;
-            //if(!state.truth[start+di]) continue;
-            //layer.output[start + di] = 1;
-        }
-    }
-}
-
-void forward_detection_layer(const detection_layer layer, network_state state)
-{
-    int in_i = 0;
-    int out_i = 0;
-    int locations = get_detection_layer_locations(layer);
+    int locations = l.side*l.side;
     int i,j;
-    for(i = 0; i < layer.batch*locations; ++i){
-        int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]);
-        float scale = 1;
-        if(layer.rescore) scale = state.input[in_i++];
-        else if(layer.nuisance){
-            layer.output[out_i++] = 1-state.input[in_i++];
-            scale = mask;
-        }
-        else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++];
-
-        for(j = 0; j < layer.classes; ++j){
-            layer.output[out_i++] = scale*state.input[in_i++];
-        }
-        if(layer.nuisance){
-            
-        }else if(layer.background){
-            softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background);
-            activate_array(state.input+in_i, layer.coords, LOGISTIC);
-        }
-        for(j = 0; j < layer.coords; ++j){
-            layer.output[out_i++] = mask*state.input[in_i++];
+    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
+    int b;
+    if (l.softmax){
+        for(b = 0; b < l.batch; ++b){
+            int index = b*l.inputs;
+            for (i = 0; i < locations; ++i) {
+                int offset = i*l.classes;
+                softmax_array(l.output + index + offset, l.classes, 1,
+                        l.output + index + offset);
+            }
+            int offset = locations*l.classes;
+            activate_array(l.output + index + offset, locations*l.n*(1+l.coords), LOGISTIC);
         }
     }
-    /*
-    if(layer.background || 1){
-        for(i = 0; i < layer.batch*locations; ++i){
-            int index = i*(layer.classes+layer.coords+layer.background);
-            for(j= 0; j < layer.classes; ++j){
-                if(state.truth[index+j+layer.background]){
-                    //dark_zone(layer, j, index, state);
+    if(state.train){
+        float avg_iou = 0;
+        float avg_cat = 0;
+        float avg_allcat = 0;
+        float avg_obj = 0;
+        float avg_anyobj = 0;
+        int count = 0;
+        *(l.cost) = 0;
+        int size = l.inputs * l.batch;
+        memset(l.delta, 0, size * sizeof(float));
+        for (b = 0; b < l.batch; ++b){
+            int index = b*l.inputs;
+            for (i = 0; i < locations; ++i) {
+                int truth_index = (b*locations + i)*(1+l.coords+l.classes);
+                int is_obj = state.truth[truth_index];
+                for (j = 0; j < l.n; ++j) {
+                    int p_index = index + locations*l.classes + i*l.n + j;
+                    l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]);
+                    *(l.cost) += l.noobject_scale*pow(l.output[p_index], 2);
+                    avg_anyobj += l.output[p_index];
                 }
+
+                int best_index = -1;
+                float best_iou = 0;
+                float best_rmse = 20;
+
+                if (!is_obj){
+                    continue;
+                }
+
+                int class_index = index + i*l.classes;
+                for(j = 0; j < l.classes; ++j) {
+                    l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]);
+                    *(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2);
+                    if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j];
+                    avg_allcat += l.output[class_index+j];
+                }
+
+                box truth = float_to_box(state.truth + truth_index + 1 + l.classes);
+                truth.x /= l.side;
+                truth.y /= l.side;
+
+                for(j = 0; j < l.n; ++j){
+                    int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords;
+                    box out = float_to_box(l.output + box_index);
+                    out.x /= l.side;
+                    out.y /= l.side;
+
+                    if (l.sqrt){
+                        out.w = out.w*out.w;
+                        out.h = out.h*out.h;
+                    }
+
+                    float iou  = box_iou(out, truth);
+                    //iou = 0;
+                    float rmse = box_rmse(out, truth);
+                    if(best_iou > 0 || iou > 0){
+                        if(iou > best_iou){
+                            best_iou = iou;
+                            best_index = j;
+                        }
+                    }else{
+                        if(rmse < best_rmse){
+                            best_rmse = rmse;
+                            best_index = j;
+                        }
+                    }
+                }
+
+                if(l.forced){
+                    if(truth.w*truth.h < .1){
+                        best_index = 1;
+                    }else{
+                        best_index = 0;
+                    }
+                }
+
+                int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords;
+                int tbox_index = truth_index + 1 + l.classes;
+
+                box out = float_to_box(l.output + box_index);
+                out.x /= l.side;
+                out.y /= l.side;
+                if (l.sqrt) {
+                    out.w = out.w*out.w;
+                    out.h = out.h*out.h;
+                }
+                float iou  = box_iou(out, truth);
+
+                //printf("%d,", best_index);
+                int p_index = index + locations*l.classes + i*l.n + best_index;
+                *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2);
+                *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2);
+                avg_obj += l.output[p_index];
+                l.delta[p_index] = l.object_scale * (1.-l.output[p_index]);
+
+                if(l.rescore){
+                    l.delta[p_index] = l.object_scale * (iou - l.output[p_index]);
+                }
+
+                l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]);
+                l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]);
+                l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]);
+                l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]);
+                if(l.sqrt){
+                    l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]);
+                    l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]);
+                }
+
+                *(l.cost) += pow(1-iou, 2);
+                avg_iou += iou;
+                ++count;
+            }
+            if(l.softmax){
+                gradient_array(l.output + index + locations*l.classes, locations*l.n*(1+l.coords), 
+                        LOGISTIC, l.delta + index + locations*l.classes);
             }
         }
+        printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
     }
-    */
 }
 
-void backward_detection_layer(const detection_layer layer, network_state state)
+void backward_detection_layer(const detection_layer l, network_state state)
 {
-    int locations = get_detection_layer_locations(layer);
-    int i,j;
-    int in_i = 0;
-    int out_i = 0;
-    for(i = 0; i < layer.batch*locations; ++i){
-        float scale = 1;
-        float latent_delta = 0;
-        if(layer.rescore) scale = state.input[in_i++];
-        else if (layer.nuisance)   state.delta[in_i++] = -layer.delta[out_i++];
-        else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++];
-        for(j = 0; j < layer.classes; ++j){
-            latent_delta += state.input[in_i]*layer.delta[out_i];
-            state.delta[in_i++] = scale*layer.delta[out_i++];
-        }
-
-        if (layer.nuisance) ;
-        else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
-        for(j = 0; j < layer.coords; ++j){
-            state.delta[in_i++] = layer.delta[out_i++];
-        }
-        if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore-layer.background] = latent_delta;
-    }
+    axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
 }
 
 #ifdef GPU
 
-void forward_detection_layer_gpu(const detection_layer layer, network_state state)
+void forward_detection_layer_gpu(const detection_layer l, network_state state)
 {
-    int outputs = get_detection_layer_output_size(layer);
-    float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
+    if(!state.train){
+        copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
+        return;
+    }
+
+    float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
     float *truth_cpu = 0;
     if(state.truth){
-        truth_cpu = calloc(layer.batch*outputs, sizeof(float));
-        cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
+        int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes);
+        truth_cpu = calloc(num_truth, sizeof(float));
+        cuda_pull_array(state.truth, truth_cpu, num_truth);
     }
-    cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
+    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
     network_state cpu_state;
     cpu_state.train = state.train;
     cpu_state.truth = truth_cpu;
     cpu_state.input = in_cpu;
-    forward_detection_layer(layer, cpu_state);
-    cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
+    forward_detection_layer(l, cpu_state);
+    cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
+    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
     free(cpu_state.input);
     if(cpu_state.truth) free(cpu_state.truth);
 }
 
-void backward_detection_layer_gpu(detection_layer layer, network_state state)
+void backward_detection_layer_gpu(detection_layer l, network_state state)
 {
-    int outputs = get_detection_layer_output_size(layer);
-
-    float *in_cpu =    calloc(layer.batch*layer.inputs, sizeof(float));
-    float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
-    float *truth_cpu = 0;
-    if(state.truth){
-        truth_cpu = calloc(layer.batch*outputs, sizeof(float));
-        cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
-    }
-    network_state cpu_state;
-    cpu_state.train = state.train;
-    cpu_state.input = in_cpu;
-    cpu_state.truth = truth_cpu;
-    cpu_state.delta = delta_cpu;
-
-    cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
-    cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
-    backward_detection_layer(layer, cpu_state);
-    cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs);
-
-    free(in_cpu);
-    free(delta_cpu);
+    axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
+    //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
 }
 #endif
 

--
Gitblit v1.10.0