From a392bbd0c957a00e3782c96e7ced84a29ff9dd88 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 15 Mar 2016 05:33:02 +0000
Subject: [PATCH] Play along w/ alphago

---
 src/network.c |  629 ++++++++++++++++++++++++++++++++++++++++++++++++++++++--
 1 files changed, 604 insertions(+), 25 deletions(-)

diff --git a/src/network.c b/src/network.c
index e55535c..e6fb51e 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,48 +1,627 @@
+#include <stdio.h>
+#include <time.h>
 #include "network.h"
 #include "image.h"
+#include "data.h"
+#include "utils.h"
+#include "blas.h"
 
+#include "crop_layer.h"
 #include "connected_layer.h"
+#include "rnn_layer.h"
+#include "crnn_layer.h"
+#include "local_layer.h"
 #include "convolutional_layer.h"
+#include "activation_layer.h"
+#include "deconvolutional_layer.h"
+#include "detection_layer.h"
+#include "normalization_layer.h"
 #include "maxpool_layer.h"
+#include "avgpool_layer.h"
+#include "cost_layer.h"
+#include "softmax_layer.h"
+#include "dropout_layer.h"
+#include "route_layer.h"
+#include "shortcut_layer.h"
 
-void run_network(image input, network net)
+int get_current_batch(network net)
+{
+    int batch_num = (*net.seen)/(net.batch*net.subdivisions);
+    return batch_num;
+}
+
+void reset_momentum(network net)
+{
+    if (net.momentum == 0) return;
+    net.learning_rate = 0;
+    net.momentum = 0;
+    net.decay = 0;
+    #ifdef GPU
+        if(gpu_index >= 0) update_network_gpu(net);
+    #endif
+}
+
+float get_current_rate(network net)
+{
+    int batch_num = get_current_batch(net);
+    int i;
+    float rate;
+    switch (net.policy) {
+        case CONSTANT:
+            return net.learning_rate;
+        case STEP:
+            return net.learning_rate * pow(net.scale, batch_num/net.step);
+        case STEPS:
+            rate = net.learning_rate;
+            for(i = 0; i < net.num_steps; ++i){
+                if(net.steps[i] > batch_num) return rate;
+                rate *= net.scales[i];
+                if(net.steps[i] > batch_num - 1) reset_momentum(net);
+            }
+            return rate;
+        case EXP:
+            return net.learning_rate * pow(net.gamma, batch_num);
+        case POLY:
+            return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+        case SIG:
+            return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
+        default:
+            fprintf(stderr, "Policy is weird!\n");
+            return net.learning_rate;
+    }
+}
+
+char *get_layer_string(LAYER_TYPE a)
+{
+    switch(a){
+        case CONVOLUTIONAL:
+            return "convolutional";
+        case ACTIVE:
+            return "activation";
+        case LOCAL:
+            return "local";
+        case DECONVOLUTIONAL:
+            return "deconvolutional";
+        case CONNECTED:
+            return "connected";
+        case RNN:
+            return "rnn";
+        case CRNN:
+            return "crnn";
+        case MAXPOOL:
+            return "maxpool";
+        case AVGPOOL:
+            return "avgpool";
+        case SOFTMAX:
+            return "softmax";
+        case DETECTION:
+            return "detection";
+        case DROPOUT:
+            return "dropout";
+        case CROP:
+            return "crop";
+        case COST:
+            return "cost";
+        case ROUTE:
+            return "route";
+        case SHORTCUT:
+            return "shortcut";
+        case NORMALIZATION:
+            return "normalization";
+        default:
+            break;
+    }
+    return "none";
+}
+
+network make_network(int n)
+{
+    network net = {0};
+    net.n = n;
+    net.layers = calloc(net.n, sizeof(layer));
+    net.seen = calloc(1, sizeof(int));
+    #ifdef GPU
+    net.input_gpu = calloc(1, sizeof(float *));
+    net.truth_gpu = calloc(1, sizeof(float *));
+    #endif
+    return net;
+}
+
+void forward_network(network net, network_state state)
 {
     int i;
-    double *input_d = 0;
     for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            run_convolutional_layer(input, layer);
-            input = layer.output;
-            input_d = layer.output.data;
+        state.index = i;
+        layer l = net.layers[i];
+        if(l.delta){
+            scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
         }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            run_connected_layer(input_d, layer);
-            input_d = layer.output;
+        if(l.type == CONVOLUTIONAL){
+            forward_convolutional_layer(l, state);
+        } else if(l.type == DECONVOLUTIONAL){
+            forward_deconvolutional_layer(l, state);
+        } else if(l.type == ACTIVE){
+            forward_activation_layer(l, state);
+        } else if(l.type == LOCAL){
+            forward_local_layer(l, state);
+        } else if(l.type == NORMALIZATION){
+            forward_normalization_layer(l, state);
+        } else if(l.type == DETECTION){
+            forward_detection_layer(l, state);
+        } else if(l.type == CONNECTED){
+            forward_connected_layer(l, state);
+        } else if(l.type == RNN){
+            forward_rnn_layer(l, state);
+        } else if(l.type == CRNN){
+            forward_crnn_layer(l, state);
+        } else if(l.type == CROP){
+            forward_crop_layer(l, state);
+        } else if(l.type == COST){
+            forward_cost_layer(l, state);
+        } else if(l.type == SOFTMAX){
+            forward_softmax_layer(l, state);
+        } else if(l.type == MAXPOOL){
+            forward_maxpool_layer(l, state);
+        } else if(l.type == AVGPOOL){
+            forward_avgpool_layer(l, state);
+        } else if(l.type == DROPOUT){
+            forward_dropout_layer(l, state);
+        } else if(l.type == ROUTE){
+            forward_route_layer(l, net);
+        } else if(l.type == SHORTCUT){
+            forward_shortcut_layer(l, state);
         }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            run_maxpool_layer(input, layer);
-            input = layer.output;
-            input_d = layer.output.data;
+        state.input = l.output;
+    }
+}
+
+void update_network(network net)
+{
+    int i;
+    int update_batch = net.batch*net.subdivisions;
+    float rate = get_current_rate(net);
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == DECONVOLUTIONAL){
+            update_deconvolutional_layer(l, rate, net.momentum, net.decay);
+        } else if(l.type == CONNECTED){
+            update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == RNN){
+            update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == CRNN){
+            update_crnn_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == LOCAL){
+            update_local_layer(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
 
+float *get_network_output(network net)
+{
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
+    return net.layers[i].output;
+}
+
+float get_network_cost(network net)
+{
+    int i;
+    float sum = 0;
+    int count = 0;
+    for(i = 0; i < net.n; ++i){
+        if(net.layers[i].type == COST){
+            sum += net.layers[i].cost[0];
+            ++count;
+        }
+        if(net.layers[i].type == DETECTION){
+            sum += net.layers[i].cost[0];
+            ++count;
+        }
+    }
+    return sum/count;
+}
+
+int get_predicted_class_network(network net)
+{
+    float *out = get_network_output(net);
+    int k = get_network_output_size(net);
+    return max_index(out, k);
+}
+
+void backward_network(network net, network_state state)
+{
+    int i;
+    float *original_input = state.input;
+    float *original_delta = state.delta;
+    for(i = net.n-1; i >= 0; --i){
+        state.index = i;
+        if(i == 0){
+            state.input = original_input;
+            state.delta = original_delta;
+        }else{
+            layer prev = net.layers[i-1];
+            state.input = prev.output;
+            state.delta = prev.delta;
+        }
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            backward_convolutional_layer(l, state);
+        } else if(l.type == DECONVOLUTIONAL){
+            backward_deconvolutional_layer(l, state);
+        } else if(l.type == ACTIVE){
+            backward_activation_layer(l, state);
+        } else if(l.type == NORMALIZATION){
+            backward_normalization_layer(l, state);
+        } else if(l.type == MAXPOOL){
+            if(i != 0) backward_maxpool_layer(l, state);
+        } else if(l.type == AVGPOOL){
+            backward_avgpool_layer(l, state);
+        } else if(l.type == DROPOUT){
+            backward_dropout_layer(l, state);
+        } else if(l.type == DETECTION){
+            backward_detection_layer(l, state);
+        } else if(l.type == SOFTMAX){
+            if(i != 0) backward_softmax_layer(l, state);
+        } else if(l.type == CONNECTED){
+            backward_connected_layer(l, state);
+        } else if(l.type == RNN){
+            backward_rnn_layer(l, state);
+        } else if(l.type == CRNN){
+            backward_crnn_layer(l, state);
+        } else if(l.type == LOCAL){
+            backward_local_layer(l, state);
+        } else if(l.type == COST){
+            backward_cost_layer(l, state);
+        } else if(l.type == ROUTE){
+            backward_route_layer(l, net);
+        } else if(l.type == SHORTCUT){
+            backward_shortcut_layer(l, state);
+        }
+    }
+}
+
+float train_network_datum(network net, float *x, float *y)
+{
+    *net.seen += net.batch;
+#ifdef GPU
+    if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
+#endif
+    network_state state;
+    state.index = 0;
+    state.net = net;
+    state.input = x;
+    state.delta = 0;
+    state.truth = y;
+    state.train = 1;
+    forward_network(net, state);
+    backward_network(net, state);
+    float error = get_network_cost(net);
+    if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net);
+    return error;
+}
+
+float train_network_sgd(network net, data d, int n)
+{
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_random_batch(d, batch, X, y);
+        float err = train_network_datum(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
+float train_network(network net, data d)
+{
+    int batch = net.batch;
+    int n = d.X.rows / batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_next_batch(d, batch, i*batch, X, y);
+        float err = train_network_datum(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
+float train_network_batch(network net, data d, int n)
+{
+    int i,j;
+    network_state state;
+    state.index = 0;
+    state.net = net;
+    state.train = 1;
+    state.delta = 0;
+    float sum = 0;
+    int batch = 2;
+    for(i = 0; i < n; ++i){
+        for(j = 0; j < batch; ++j){
+            int index = rand()%d.X.rows;
+            state.input = d.X.vals[index];
+            state.truth = d.y.vals[index];
+            forward_network(net, state);
+            backward_network(net, state);
+            sum += get_network_cost(net);
+        }
+        update_network(net);
+    }
+    return (float)sum/(n*batch);
+}
+
+void set_batch_network(network *net, int b)
+{
+    net->batch = b;
+    int i;
+    for(i = 0; i < net->n; ++i){
+        net->layers[i].batch = b;
+    }
+}
+
+int resize_network(network *net, int w, int h)
+{
+    int i;
+    //if(w == net->w && h == net->h) return 0;
+    net->w = w;
+    net->h = h;
+    int inputs = 0;
+    //fprintf(stderr, "Resizing to %d x %d...", w, h);
+    //fflush(stderr);
+    for (i = 0; i < net->n; ++i){
+        layer l = net->layers[i];
+        if(l.type == CONVOLUTIONAL){
+            resize_convolutional_layer(&l, w, h);
+        }else if(l.type == CROP){
+            resize_crop_layer(&l, w, h);
+        }else if(l.type == MAXPOOL){
+            resize_maxpool_layer(&l, w, h);
+        }else if(l.type == AVGPOOL){
+            resize_avgpool_layer(&l, w, h);
+        }else if(l.type == NORMALIZATION){
+            resize_normalization_layer(&l, w, h);
+        }else if(l.type == COST){
+            resize_cost_layer(&l, inputs);
+        }else{
+            error("Cannot resize this type of layer");
+        }
+        inputs = l.outputs;
+        net->layers[i] = l;
+        w = l.out_w;
+        h = l.out_h;
+        if(l.type == AVGPOOL) break;
+    }
+    //fprintf(stderr, " Done!\n");
+    return 0;
+}
+
+int get_network_output_size(network net)
+{
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
+    return net.layers[i].outputs;
+}
+
+int get_network_input_size(network net)
+{
+    return net.layers[0].inputs;
+}
+
+detection_layer get_network_detection_layer(network net)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.layers[i].type == DETECTION){
+            return net.layers[i];
+        }
+    }
+    fprintf(stderr, "Detection layer not found!!\n");
+    detection_layer l = {0};
+    return l;
+}
+
+image get_network_image_layer(network net, int i)
+{
+    layer l = net.layers[i];
+    if (l.out_w && l.out_h && l.out_c){
+        return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
+    }
+    image def = {0};
+    return def;
+}
+
 image get_network_image(network net)
 {
     int i;
     for(i = net.n-1; i >= 0; --i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            return layer.output;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            return layer.output;
-        }
+        image m = get_network_image_layer(net, i);
+        if(m.h != 0) return m;
     }
-    return make_image(1,1,1);
+    image def = {0};
+    return def;
 }
 
+void visualize_network(network net)
+{
+    image *prev = 0;
+    int i;
+    char buff[256];
+    for(i = 0; i < net.n; ++i){
+        sprintf(buff, "Layer %d", i);
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            prev = visualize_convolutional_layer(l, buff, prev);
+        }
+    } 
+}
+
+void top_predictions(network net, int k, int *index)
+{
+    int size = get_network_output_size(net);
+    float *out = get_network_output(net);
+    top_k(out, size, k, index);
+}
+
+
+float *network_predict(network net, float *input)
+{
+#ifdef GPU
+    if(gpu_index >= 0)  return network_predict_gpu(net, input);
+#endif
+
+    network_state state;
+    state.net = net;
+    state.index = 0;
+    state.input = input;
+    state.truth = 0;
+    state.train = 0;
+    state.delta = 0;
+    forward_network(net, state);
+    float *out = get_network_output(net);
+    return out;
+}
+
+matrix network_predict_data_multi(network net, data test, int n)
+{
+    int i,j,b,m;
+    int k = get_network_output_size(net);
+    matrix pred = make_matrix(test.X.rows, k);
+    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    for(i = 0; i < test.X.rows; i += net.batch){
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+        }
+        for(m = 0; m < n; ++m){
+            float *out = network_predict(net, X);
+            for(b = 0; b < net.batch; ++b){
+                if(i+b == test.X.rows) break;
+                for(j = 0; j < k; ++j){
+                    pred.vals[i+b][j] += out[j+b*k]/n;
+                }
+            }
+        }
+    }
+    free(X);
+    return pred;   
+}
+
+matrix network_predict_data(network net, data test)
+{
+    int i,j,b;
+    int k = get_network_output_size(net);
+    matrix pred = make_matrix(test.X.rows, k);
+    float *X = calloc(net.batch*test.X.cols, sizeof(float));
+    for(i = 0; i < test.X.rows; i += net.batch){
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+        }
+        float *out = network_predict(net, X);
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            for(j = 0; j < k; ++j){
+                pred.vals[i+b][j] = out[j+b*k];
+            }
+        }
+    }
+    free(X);
+    return pred;   
+}
+
+void print_network(network net)
+{
+    int i,j;
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        float *output = l.output;
+        int n = l.outputs;
+        float mean = mean_array(output, n);
+        float vari = variance_array(output, n);
+        fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
+        if(n > 100) n = 100;
+        for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
+        if(n == 100)fprintf(stderr,".....\n");
+        fprintf(stderr, "\n");
+    }
+}
+
+void compare_networks(network n1, network n2, data test)
+{
+    matrix g1 = network_predict_data(n1, test);
+    matrix g2 = network_predict_data(n2, test);
+    int i;
+    int a,b,c,d;
+    a = b = c = d = 0;
+    for(i = 0; i < g1.rows; ++i){
+        int truth = max_index(test.y.vals[i], test.y.cols);
+        int p1 = max_index(g1.vals[i], g1.cols);
+        int p2 = max_index(g2.vals[i], g2.cols);
+        if(p1 == truth){
+            if(p2 == truth) ++d;
+            else ++c;
+        }else{
+            if(p2 == truth) ++b;
+            else ++a;
+        }
+    }
+    printf("%5d %5d\n%5d %5d\n", a, b, c, d);
+    float num = pow((abs(b - c) - 1.), 2.);
+    float den = b + c;
+    printf("%f\n", num/den); 
+}
+
+float network_accuracy(network net, data d)
+{
+    matrix guess = network_predict_data(net, d);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
+    free_matrix(guess);
+    return acc;
+}
+
+float *network_accuracies(network net, data d, int n)
+{
+    static float acc[2];
+    matrix guess = network_predict_data(net, d);
+    acc[0] = matrix_topk_accuracy(d.y, guess, 1);
+    acc[1] = matrix_topk_accuracy(d.y, guess, n);
+    free_matrix(guess);
+    return acc;
+}
+
+
+float network_accuracy_multi(network net, data d, int n)
+{
+    matrix guess = network_predict_data_multi(net, d, n);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
+    free_matrix(guess);
+    return acc;
+}
+
+void free_network(network net)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        free_layer(net.layers[i]);
+    }
+    free(net.layers);
+    #ifdef GPU
+    if(*net.input_gpu) cuda_free(*net.input_gpu);
+    if(*net.truth_gpu) cuda_free(*net.truth_gpu);
+    if(net.input_gpu) free(net.input_gpu);
+    if(net.truth_gpu) free(net.truth_gpu);
+    #endif
+}

--
Gitblit v1.10.0