From a392bbd0c957a00e3782c96e7ced84a29ff9dd88 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 15 Mar 2016 05:33:02 +0000
Subject: [PATCH] Play along w/ alphago
---
src/network.c | 655 ++++++++++++++++++++++++-----------------------------------
1 files changed, 268 insertions(+), 387 deletions(-)
diff --git a/src/network.c b/src/network.c
index 61200d3..e6fb51e 100644
--- a/src/network.c
+++ b/src/network.c
@@ -4,42 +4,110 @@
#include "image.h"
#include "data.h"
#include "utils.h"
-#include "params.h"
+#include "blas.h"
#include "crop_layer.h"
#include "connected_layer.h"
+#include "rnn_layer.h"
+#include "crnn_layer.h"
+#include "local_layer.h"
#include "convolutional_layer.h"
+#include "activation_layer.h"
#include "deconvolutional_layer.h"
#include "detection_layer.h"
-#include "maxpool_layer.h"
-#include "cost_layer.h"
#include "normalization_layer.h"
+#include "maxpool_layer.h"
+#include "avgpool_layer.h"
+#include "cost_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
+#include "route_layer.h"
+#include "shortcut_layer.h"
+
+int get_current_batch(network net)
+{
+ int batch_num = (*net.seen)/(net.batch*net.subdivisions);
+ return batch_num;
+}
+
+void reset_momentum(network net)
+{
+ if (net.momentum == 0) return;
+ net.learning_rate = 0;
+ net.momentum = 0;
+ net.decay = 0;
+ #ifdef GPU
+ if(gpu_index >= 0) update_network_gpu(net);
+ #endif
+}
+
+float get_current_rate(network net)
+{
+ int batch_num = get_current_batch(net);
+ int i;
+ float rate;
+ switch (net.policy) {
+ case CONSTANT:
+ return net.learning_rate;
+ case STEP:
+ return net.learning_rate * pow(net.scale, batch_num/net.step);
+ case STEPS:
+ rate = net.learning_rate;
+ for(i = 0; i < net.num_steps; ++i){
+ if(net.steps[i] > batch_num) return rate;
+ rate *= net.scales[i];
+ if(net.steps[i] > batch_num - 1) reset_momentum(net);
+ }
+ return rate;
+ case EXP:
+ return net.learning_rate * pow(net.gamma, batch_num);
+ case POLY:
+ return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+ case SIG:
+ return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
+ default:
+ fprintf(stderr, "Policy is weird!\n");
+ return net.learning_rate;
+ }
+}
char *get_layer_string(LAYER_TYPE a)
{
switch(a){
case CONVOLUTIONAL:
return "convolutional";
+ case ACTIVE:
+ return "activation";
+ case LOCAL:
+ return "local";
case DECONVOLUTIONAL:
return "deconvolutional";
case CONNECTED:
return "connected";
+ case RNN:
+ return "rnn";
+ case CRNN:
+ return "crnn";
case MAXPOOL:
return "maxpool";
+ case AVGPOOL:
+ return "avgpool";
case SOFTMAX:
return "softmax";
case DETECTION:
return "detection";
- case NORMALIZATION:
- return "normalization";
case DROPOUT:
return "dropout";
case CROP:
return "crop";
case COST:
return "cost";
+ case ROUTE:
+ return "route";
+ case SHORTCUT:
+ return "shortcut";
+ case NORMALIZATION:
+ return "normalization";
default:
break;
}
@@ -48,16 +116,10 @@
network make_network(int n)
{
- network net;
+ network net = {0};
net.n = n;
- net.layers = calloc(net.n, sizeof(void *));
- net.types = calloc(net.n, sizeof(LAYER_TYPE));
- net.outputs = 0;
- net.output = 0;
- net.seen = 0;
- net.batch = 0;
- net.inputs = 0;
- net.h = net.w = net.c = 0;
+ net.layers = calloc(net.n, sizeof(layer));
+ net.seen = calloc(1, sizeof(int));
#ifdef GPU
net.input_gpu = calloc(1, sizeof(float *));
net.truth_gpu = calloc(1, sizeof(float *));
@@ -69,37 +131,47 @@
{
int i;
for(i = 0; i < net.n; ++i){
- if(net.types[i] == CONVOLUTIONAL){
- forward_convolutional_layer(*(convolutional_layer *)net.layers[i], state);
+ state.index = i;
+ layer l = net.layers[i];
+ if(l.delta){
+ scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
}
- else if(net.types[i] == DECONVOLUTIONAL){
- forward_deconvolutional_layer(*(deconvolutional_layer *)net.layers[i], state);
+ if(l.type == CONVOLUTIONAL){
+ forward_convolutional_layer(l, state);
+ } else if(l.type == DECONVOLUTIONAL){
+ forward_deconvolutional_layer(l, state);
+ } else if(l.type == ACTIVE){
+ forward_activation_layer(l, state);
+ } else if(l.type == LOCAL){
+ forward_local_layer(l, state);
+ } else if(l.type == NORMALIZATION){
+ forward_normalization_layer(l, state);
+ } else if(l.type == DETECTION){
+ forward_detection_layer(l, state);
+ } else if(l.type == CONNECTED){
+ forward_connected_layer(l, state);
+ } else if(l.type == RNN){
+ forward_rnn_layer(l, state);
+ } else if(l.type == CRNN){
+ forward_crnn_layer(l, state);
+ } else if(l.type == CROP){
+ forward_crop_layer(l, state);
+ } else if(l.type == COST){
+ forward_cost_layer(l, state);
+ } else if(l.type == SOFTMAX){
+ forward_softmax_layer(l, state);
+ } else if(l.type == MAXPOOL){
+ forward_maxpool_layer(l, state);
+ } else if(l.type == AVGPOOL){
+ forward_avgpool_layer(l, state);
+ } else if(l.type == DROPOUT){
+ forward_dropout_layer(l, state);
+ } else if(l.type == ROUTE){
+ forward_route_layer(l, net);
+ } else if(l.type == SHORTCUT){
+ forward_shortcut_layer(l, state);
}
- else if(net.types[i] == DETECTION){
- forward_detection_layer(*(detection_layer *)net.layers[i], state);
- }
- else if(net.types[i] == CONNECTED){
- forward_connected_layer(*(connected_layer *)net.layers[i], state);
- }
- else if(net.types[i] == CROP){
- forward_crop_layer(*(crop_layer *)net.layers[i], state);
- }
- else if(net.types[i] == COST){
- forward_cost_layer(*(cost_layer *)net.layers[i], state);
- }
- else if(net.types[i] == SOFTMAX){
- forward_softmax_layer(*(softmax_layer *)net.layers[i], state);
- }
- else if(net.types[i] == MAXPOOL){
- forward_maxpool_layer(*(maxpool_layer *)net.layers[i], state);
- }
- else if(net.types[i] == NORMALIZATION){
- forward_normalization_layer(*(normalization_layer *)net.layers[i], state);
- }
- else if(net.types[i] == DROPOUT){
- forward_dropout_layer(*(dropout_layer *)net.layers[i], state);
- }
- state.input = get_network_output_layer(net, i);
+ state.input = l.output;
}
}
@@ -107,109 +179,48 @@
{
int i;
int update_batch = net.batch*net.subdivisions;
+ float rate = get_current_rate(net);
for(i = 0; i < net.n; ++i){
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- update_convolutional_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay);
- }
- else if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- update_deconvolutional_layer(layer, net.learning_rate, net.momentum, net.decay);
- }
- else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- update_connected_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay);
+ layer l = net.layers[i];
+ if(l.type == CONVOLUTIONAL){
+ update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay);
+ } else if(l.type == DECONVOLUTIONAL){
+ update_deconvolutional_layer(l, rate, net.momentum, net.decay);
+ } else if(l.type == CONNECTED){
+ update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
+ } else if(l.type == RNN){
+ update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
+ } else if(l.type == CRNN){
+ update_crnn_layer(l, update_batch, rate, net.momentum, net.decay);
+ } else if(l.type == LOCAL){
+ update_local_layer(l, update_batch, rate, net.momentum, net.decay);
}
}
}
-float *get_network_output_layer(network net, int i)
-{
- if(net.types[i] == CONVOLUTIONAL){
- return ((convolutional_layer *)net.layers[i]) -> output;
- } else if(net.types[i] == DECONVOLUTIONAL){
- return ((deconvolutional_layer *)net.layers[i]) -> output;
- } else if(net.types[i] == MAXPOOL){
- return ((maxpool_layer *)net.layers[i]) -> output;
- } else if(net.types[i] == DETECTION){
- return ((detection_layer *)net.layers[i]) -> output;
- } else if(net.types[i] == SOFTMAX){
- return ((softmax_layer *)net.layers[i]) -> output;
- } else if(net.types[i] == DROPOUT){
- return get_network_output_layer(net, i-1);
- } else if(net.types[i] == CONNECTED){
- return ((connected_layer *)net.layers[i]) -> output;
- } else if(net.types[i] == CROP){
- return ((crop_layer *)net.layers[i]) -> output;
- } else if(net.types[i] == NORMALIZATION){
- return ((normalization_layer *)net.layers[i]) -> output;
- }
- return 0;
-}
-
float *get_network_output(network net)
{
int i;
- for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
- return get_network_output_layer(net, i);
-}
-
-float *get_network_delta_layer(network net, int i)
-{
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- return layer.delta;
- } else if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- return layer.delta;
- } else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- return layer.delta;
- } else if(net.types[i] == SOFTMAX){
- softmax_layer layer = *(softmax_layer *)net.layers[i];
- return layer.delta;
- } else if(net.types[i] == DETECTION){
- detection_layer layer = *(detection_layer *)net.layers[i];
- return layer.delta;
- } else if(net.types[i] == DROPOUT){
- if(i == 0) return 0;
- return get_network_delta_layer(net, i-1);
- } else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- return layer.delta;
- }
- return 0;
+ for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
+ return net.layers[i].output;
}
float get_network_cost(network net)
{
- if(net.types[net.n-1] == COST){
- return ((cost_layer *)net.layers[net.n-1])->output[0];
- }
- return 0;
-}
-
-float *get_network_delta(network net)
-{
- return get_network_delta_layer(net, net.n-1);
-}
-
-float calculate_error_network(network net, float *truth)
-{
- float sum = 0;
- float *delta = get_network_delta(net);
- float *out = get_network_output(net);
int i;
- for(i = 0; i < get_network_output_size(net)*net.batch; ++i){
- //if(i %get_network_output_size(net) == 0) printf("\n");
- //printf("%5.2f %5.2f, ", out[i], truth[i]);
- //if(i == get_network_output_size(net)) printf("\n");
- delta[i] = truth[i] - out[i];
- //printf("%.10f, ", out[i]);
- sum += delta[i]*delta[i];
+ float sum = 0;
+ int count = 0;
+ for(i = 0; i < net.n; ++i){
+ if(net.layers[i].type == COST){
+ sum += net.layers[i].cost[0];
+ ++count;
+ }
+ if(net.layers[i].type == DETECTION){
+ sum += net.layers[i].cost[0];
+ ++count;
+ }
}
- //printf("\n");
- return sum;
+ return sum/count;
}
int get_predicted_class_network(network net)
@@ -223,66 +234,71 @@
{
int i;
float *original_input = state.input;
+ float *original_delta = state.delta;
for(i = net.n-1; i >= 0; --i){
+ state.index = i;
if(i == 0){
state.input = original_input;
- state.delta = 0;
+ state.delta = original_delta;
}else{
- state.input = get_network_output_layer(net, i-1);
- state.delta = get_network_delta_layer(net, i-1);
+ layer prev = net.layers[i-1];
+ state.input = prev.output;
+ state.delta = prev.delta;
}
-
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- backward_convolutional_layer(layer, state);
- } else if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- backward_deconvolutional_layer(layer, state);
- }
- else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- if(i != 0) backward_maxpool_layer(layer, state);
- }
- else if(net.types[i] == DROPOUT){
- dropout_layer layer = *(dropout_layer *)net.layers[i];
- backward_dropout_layer(layer, state);
- }
- else if(net.types[i] == DETECTION){
- detection_layer layer = *(detection_layer *)net.layers[i];
- backward_detection_layer(layer, state);
- }
- else if(net.types[i] == NORMALIZATION){
- normalization_layer layer = *(normalization_layer *)net.layers[i];
- if(i != 0) backward_normalization_layer(layer, state);
- }
- else if(net.types[i] == SOFTMAX){
- softmax_layer layer = *(softmax_layer *)net.layers[i];
- if(i != 0) backward_softmax_layer(layer, state);
- }
- else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- backward_connected_layer(layer, state);
- }
- else if(net.types[i] == COST){
- cost_layer layer = *(cost_layer *)net.layers[i];
- backward_cost_layer(layer, state);
+ layer l = net.layers[i];
+ if(l.type == CONVOLUTIONAL){
+ backward_convolutional_layer(l, state);
+ } else if(l.type == DECONVOLUTIONAL){
+ backward_deconvolutional_layer(l, state);
+ } else if(l.type == ACTIVE){
+ backward_activation_layer(l, state);
+ } else if(l.type == NORMALIZATION){
+ backward_normalization_layer(l, state);
+ } else if(l.type == MAXPOOL){
+ if(i != 0) backward_maxpool_layer(l, state);
+ } else if(l.type == AVGPOOL){
+ backward_avgpool_layer(l, state);
+ } else if(l.type == DROPOUT){
+ backward_dropout_layer(l, state);
+ } else if(l.type == DETECTION){
+ backward_detection_layer(l, state);
+ } else if(l.type == SOFTMAX){
+ if(i != 0) backward_softmax_layer(l, state);
+ } else if(l.type == CONNECTED){
+ backward_connected_layer(l, state);
+ } else if(l.type == RNN){
+ backward_rnn_layer(l, state);
+ } else if(l.type == CRNN){
+ backward_crnn_layer(l, state);
+ } else if(l.type == LOCAL){
+ backward_local_layer(l, state);
+ } else if(l.type == COST){
+ backward_cost_layer(l, state);
+ } else if(l.type == ROUTE){
+ backward_route_layer(l, net);
+ } else if(l.type == SHORTCUT){
+ backward_shortcut_layer(l, state);
}
}
}
float train_network_datum(network net, float *x, float *y)
{
- #ifdef GPU
+ *net.seen += net.batch;
+#ifdef GPU
if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
- #endif
+#endif
network_state state;
+ state.index = 0;
+ state.net = net;
state.input = x;
+ state.delta = 0;
state.truth = y;
state.train = 1;
forward_network(net, state);
backward_network(net, state);
float error = get_network_cost(net);
- if((net.seen/net.batch)%net.subdivisions == 0) update_network(net);
+ if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net);
return error;
}
@@ -295,7 +311,6 @@
int i;
float sum = 0;
for(i = 0; i < n; ++i){
- net.seen += batch;
get_random_batch(d, batch, X, y);
float err = train_network_datum(net, X, y);
sum += err;
@@ -316,7 +331,6 @@
float sum = 0;
for(i = 0; i < n; ++i){
get_next_batch(d, batch, i*batch, X, y);
- net.seen += batch;
float err = train_network_datum(net, X, y);
sum += err;
}
@@ -329,7 +343,10 @@
{
int i,j;
network_state state;
+ state.index = 0;
+ state.net = net;
state.train = 1;
+ state.delta = 0;
float sum = 0;
int batch = 2;
for(i = 0; i < n; ++i){
@@ -351,199 +368,79 @@
net->batch = b;
int i;
for(i = 0; i < net->n; ++i){
- if(net->types[i] == CONVOLUTIONAL){
- convolutional_layer *layer = (convolutional_layer *)net->layers[i];
- layer->batch = b;
- }else if(net->types[i] == DECONVOLUTIONAL){
- deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i];
- layer->batch = b;
- }
- else if(net->types[i] == MAXPOOL){
- maxpool_layer *layer = (maxpool_layer *)net->layers[i];
- layer->batch = b;
- }
- else if(net->types[i] == CONNECTED){
- connected_layer *layer = (connected_layer *)net->layers[i];
- layer->batch = b;
- } else if(net->types[i] == DROPOUT){
- dropout_layer *layer = (dropout_layer *) net->layers[i];
- layer->batch = b;
- } else if(net->types[i] == DETECTION){
- detection_layer *layer = (detection_layer *) net->layers[i];
- layer->batch = b;
- }
- else if(net->types[i] == SOFTMAX){
- softmax_layer *layer = (softmax_layer *)net->layers[i];
- layer->batch = b;
- }
- else if(net->types[i] == COST){
- cost_layer *layer = (cost_layer *)net->layers[i];
- layer->batch = b;
- }
- else if(net->types[i] == CROP){
- crop_layer *layer = (crop_layer *)net->layers[i];
- layer->batch = b;
- }
+ net->layers[i].batch = b;
}
}
-
-int get_network_input_size_layer(network net, int i)
-{
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- return layer.h*layer.w*layer.c;
- }
- if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- return layer.h*layer.w*layer.c;
- }
- else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- return layer.h*layer.w*layer.c;
- }
- else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- return layer.inputs;
- } else if(net.types[i] == DROPOUT){
- dropout_layer layer = *(dropout_layer *) net.layers[i];
- return layer.inputs;
- } else if(net.types[i] == DETECTION){
- detection_layer layer = *(detection_layer *) net.layers[i];
- return layer.inputs;
- } else if(net.types[i] == CROP){
- crop_layer layer = *(crop_layer *) net.layers[i];
- return layer.c*layer.h*layer.w;
- }
- else if(net.types[i] == SOFTMAX){
- softmax_layer layer = *(softmax_layer *)net.layers[i];
- return layer.inputs;
- }
- fprintf(stderr, "Can't find input size\n");
- return 0;
-}
-
-int get_network_output_size_layer(network net, int i)
-{
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- image output = get_convolutional_image(layer);
- return output.h*output.w*output.c;
- }
- else if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- image output = get_deconvolutional_image(layer);
- return output.h*output.w*output.c;
- }
- else if(net.types[i] == DETECTION){
- detection_layer layer = *(detection_layer *)net.layers[i];
- return get_detection_layer_output_size(layer);
- }
- else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- image output = get_maxpool_image(layer);
- return output.h*output.w*output.c;
- }
- else if(net.types[i] == CROP){
- crop_layer layer = *(crop_layer *) net.layers[i];
- return layer.c*layer.crop_height*layer.crop_width;
- }
- else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- return layer.outputs;
- }
- else if(net.types[i] == DROPOUT){
- dropout_layer layer = *(dropout_layer *) net.layers[i];
- return layer.inputs;
- }
- else if(net.types[i] == SOFTMAX){
- softmax_layer layer = *(softmax_layer *)net.layers[i];
- return layer.inputs;
- }
- fprintf(stderr, "Can't find output size\n");
- return 0;
-}
-
-int resize_network(network net, int h, int w, int c)
+int resize_network(network *net, int w, int h)
{
int i;
- for (i = 0; i < net.n; ++i){
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer *layer = (convolutional_layer *)net.layers[i];
- resize_convolutional_layer(layer, h, w);
- image output = get_convolutional_image(*layer);
- h = output.h;
- w = output.w;
- c = output.c;
- } else if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i];
- resize_deconvolutional_layer(layer, h, w);
- image output = get_deconvolutional_image(*layer);
- h = output.h;
- w = output.w;
- c = output.c;
- }else if(net.types[i] == MAXPOOL){
- maxpool_layer *layer = (maxpool_layer *)net.layers[i];
- resize_maxpool_layer(layer, h, w);
- image output = get_maxpool_image(*layer);
- h = output.h;
- w = output.w;
- c = output.c;
- }else if(net.types[i] == DROPOUT){
- dropout_layer *layer = (dropout_layer *)net.layers[i];
- resize_dropout_layer(layer, h*w*c);
- }else if(net.types[i] == NORMALIZATION){
- normalization_layer *layer = (normalization_layer *)net.layers[i];
- resize_normalization_layer(layer, h, w);
- image output = get_normalization_image(*layer);
- h = output.h;
- w = output.w;
- c = output.c;
+ //if(w == net->w && h == net->h) return 0;
+ net->w = w;
+ net->h = h;
+ int inputs = 0;
+ //fprintf(stderr, "Resizing to %d x %d...", w, h);
+ //fflush(stderr);
+ for (i = 0; i < net->n; ++i){
+ layer l = net->layers[i];
+ if(l.type == CONVOLUTIONAL){
+ resize_convolutional_layer(&l, w, h);
+ }else if(l.type == CROP){
+ resize_crop_layer(&l, w, h);
+ }else if(l.type == MAXPOOL){
+ resize_maxpool_layer(&l, w, h);
+ }else if(l.type == AVGPOOL){
+ resize_avgpool_layer(&l, w, h);
+ }else if(l.type == NORMALIZATION){
+ resize_normalization_layer(&l, w, h);
+ }else if(l.type == COST){
+ resize_cost_layer(&l, inputs);
}else{
error("Cannot resize this type of layer");
}
+ inputs = l.outputs;
+ net->layers[i] = l;
+ w = l.out_w;
+ h = l.out_h;
+ if(l.type == AVGPOOL) break;
}
+ //fprintf(stderr, " Done!\n");
return 0;
}
int get_network_output_size(network net)
{
int i;
- for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
- return get_network_output_size_layer(net, i);
+ for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
+ return net.layers[i].outputs;
}
int get_network_input_size(network net)
{
- return get_network_input_size_layer(net, 0);
+ return net.layers[0].inputs;
+}
+
+detection_layer get_network_detection_layer(network net)
+{
+ int i;
+ for(i = 0; i < net.n; ++i){
+ if(net.layers[i].type == DETECTION){
+ return net.layers[i];
+ }
+ }
+ fprintf(stderr, "Detection layer not found!!\n");
+ detection_layer l = {0};
+ return l;
}
image get_network_image_layer(network net, int i)
{
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- return get_convolutional_image(layer);
+ layer l = net.layers[i];
+ if (l.out_w && l.out_h && l.out_c){
+ return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
}
- else if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- return get_deconvolutional_image(layer);
- }
- else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- return get_maxpool_image(layer);
- }
- else if(net.types[i] == NORMALIZATION){
- normalization_layer layer = *(normalization_layer *)net.layers[i];
- return get_normalization_image(layer);
- }
- else if(net.types[i] == DROPOUT){
- return get_network_image_layer(net, i-1);
- }
- else if(net.types[i] == CROP){
- crop_layer layer = *(crop_layer *)net.layers[i];
- return get_crop_image(layer);
- }
- return make_empty_image(0,0,0);
+ image def = {0};
+ return def;
}
image get_network_image(network net)
@@ -553,7 +450,8 @@
image m = get_network_image_layer(net, i);
if(m.h != 0) return m;
}
- return make_empty_image(0,0,0);
+ image def = {0};
+ return def;
}
void visualize_network(network net)
@@ -561,16 +459,11 @@
image *prev = 0;
int i;
char buff[256];
- //show_image(get_network_image_layer(net, 0), "Crop");
for(i = 0; i < net.n; ++i){
sprintf(buff, "Layer %d", i);
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- prev = visualize_convolutional_layer(layer, buff, prev);
- }
- if(net.types[i] == NORMALIZATION){
- normalization_layer layer = *(normalization_layer *)net.layers[i];
- visualize_normalization_layer(layer, buff);
+ layer l = net.layers[i];
+ if(l.type == CONVOLUTIONAL){
+ prev = visualize_convolutional_layer(l, buff, prev);
}
}
}
@@ -590,6 +483,8 @@
#endif
network_state state;
+ state.net = net;
+ state.index = 0;
state.input = input;
state.truth = 0;
state.train = 0;
@@ -651,36 +546,9 @@
{
int i,j;
for(i = 0; i < net.n; ++i){
- float *output = 0;
- int n = 0;
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- output = layer.output;
- image m = get_convolutional_image(layer);
- n = m.h*m.w*m.c;
- }
- else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- output = layer.output;
- image m = get_maxpool_image(layer);
- n = m.h*m.w*m.c;
- }
- else if(net.types[i] == CROP){
- crop_layer layer = *(crop_layer *)net.layers[i];
- output = layer.output;
- image m = get_crop_image(layer);
- n = m.h*m.w*m.c;
- }
- else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- output = layer.output;
- n = layer.outputs;
- }
- else if(net.types[i] == SOFTMAX){
- softmax_layer layer = *(softmax_layer *)net.layers[i];
- output = layer.output;
- n = layer.inputs;
- }
+ layer l = net.layers[i];
+ float *output = l.output;
+ int n = l.outputs;
float mean = mean_array(output, n);
float vari = variance_array(output, n);
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
@@ -724,12 +592,12 @@
return acc;
}
-float *network_accuracies(network net, data d)
+float *network_accuracies(network net, data d, int n)
{
static float acc[2];
matrix guess = network_predict_data(net, d);
- acc[0] = matrix_topk_accuracy(d.y, guess,1);
- acc[1] = matrix_topk_accuracy(d.y, guess,5);
+ acc[0] = matrix_topk_accuracy(d.y, guess, 1);
+ acc[1] = matrix_topk_accuracy(d.y, guess, n);
free_matrix(guess);
return acc;
}
@@ -743,4 +611,17 @@
return acc;
}
-
+void free_network(network net)
+{
+ int i;
+ for(i = 0; i < net.n; ++i){
+ free_layer(net.layers[i]);
+ }
+ free(net.layers);
+ #ifdef GPU
+ if(*net.input_gpu) cuda_free(*net.input_gpu);
+ if(*net.truth_gpu) cuda_free(*net.truth_gpu);
+ if(net.input_gpu) free(net.input_gpu);
+ if(net.truth_gpu) free(net.truth_gpu);
+ #endif
+}
--
Gitblit v1.10.0