From a6b2511a566f77a0838dc1dd0d5f3e3c49a8faa0 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sat, 25 Jun 2016 23:13:54 +0000
Subject: [PATCH] idk
---
src/coco.c | 85 ++++++++++++------------------------------
1 files changed, 25 insertions(+), 60 deletions(-)
diff --git a/src/coco.c b/src/coco.c
index aadf09d..af6f7b6 100644
--- a/src/coco.c
+++ b/src/coco.c
@@ -6,45 +6,25 @@
#include "utils.h"
#include "parser.h"
#include "box.h"
+#include "demo.h"
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#endif
+void convert_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
+
char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"};
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
-void draw_coco(image im, int num, float thresh, box *boxes, float **probs, char *label)
-{
- int classes = 80;
- int i;
-
- for(i = 0; i < num; ++i){
- int class = max_index(probs[i], classes);
- float prob = probs[i][class];
- if(prob > thresh){
- int width = sqrt(prob)*5 + 1;
- printf("%f %s\n", prob, coco_classes[class]);
- float red = get_color(0,class,classes);
- float green = get_color(1,class,classes);
- float blue = get_color(2,class,classes);
- box b = boxes[i];
-
- int left = (b.x-b.w/2.)*im.w;
- int right = (b.x+b.w/2.)*im.w;
- int top = (b.y-b.h/2.)*im.h;
- int bot = (b.y+b.h/2.)*im.h;
- draw_box_width(im, left, top, right, bot, width, red, green, blue);
- }
- }
- show_image(im, label);
-}
+image coco_labels[80];
void train_coco(char *cfgfile, char *weightfile)
{
//char *train_images = "/home/pjreddie/data/voc/test/train.txt";
- char *train_images = "/home/pjreddie/data/coco/train.txt";
+ //char *train_images = "/home/pjreddie/data/coco/train.txt";
+ char *train_images = "data/coco.trainval.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
data_seed = time(0);
@@ -109,7 +89,7 @@
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
- if(i%1000==0){
+ if(i%1000==0 || (i < 1000 && i%100 == 0)){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
@@ -121,34 +101,6 @@
save_weights(net, buff);
}
-void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
-{
- int i,j,n;
- //int per_cell = 5*num+classes;
- for (i = 0; i < side*side; ++i){
- int row = i / side;
- int col = i % side;
- for(n = 0; n < num; ++n){
- int index = i*num + n;
- int p_index = side*side*classes + i*num + n;
- float scale = predictions[p_index];
- int box_index = side*side*(classes + num) + (i*num + n)*4;
- boxes[index].x = (predictions[box_index + 0] + col) / side * w;
- boxes[index].y = (predictions[box_index + 1] + row) / side * h;
- boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w;
- boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h;
- for(j = 0; j < classes; ++j){
- int class_index = i*classes;
- float prob = scale*predictions[class_index+j];
- probs[index][j] = (prob > thresh) ? prob : 0;
- }
- if(only_objectness){
- probs[index][0] = scale;
- }
- }
- }
-}
-
void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
{
int i, j;
@@ -215,7 +167,7 @@
int i=0;
int t;
- float thresh = .001;
+ float thresh = .01;
int nms = 1;
float iou_thresh = .5;
@@ -258,7 +210,7 @@
float *predictions = network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
- convert_coco_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
+ convert_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h);
free_image(val[t]);
@@ -321,7 +273,7 @@
image sized = resize_image(orig, net.w, net.h);
char *id = basecfg(path);
float *predictions = network_predict(net, sized.data);
- convert_coco_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
+ convert_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
char *labelpath = find_replace(path, "images", "labels");
@@ -369,6 +321,7 @@
detection_layer l = net.layers[net.n-1];
set_batch_network(&net, 1);
srand(2222222);
+ float nms = .4;
clock_t time;
char buff[256];
char *input = buff;
@@ -392,8 +345,10 @@
time=clock();
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
- convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
- draw_coco(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
+ convert_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
+ if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
+ draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, coco_labels, 80);
+ show_image(im, "predictions");
show_image(sized, "resized");
free_image(im);
@@ -408,7 +363,16 @@
void run_coco(int argc, char **argv)
{
+ int i;
+ for(i = 0; i < 80; ++i){
+ char buff[256];
+ sprintf(buff, "data/labels/%s.png", coco_classes[i]);
+ coco_labels[i] = load_image_color(buff, 0, 0);
+ }
float thresh = find_float_arg(argc, argv, "-thresh", .2);
+ int cam_index = find_int_arg(argc, argv, "-c", 0);
+ int frame_skip = find_int_arg(argc, argv, "-s", 0);
+
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
@@ -421,4 +385,5 @@
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
+ else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, coco_classes, coco_labels, 80, frame_skip);
}
--
Gitblit v1.10.0