From a6b2511a566f77a0838dc1dd0d5f3e3c49a8faa0 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sat, 25 Jun 2016 23:13:54 +0000
Subject: [PATCH] idk

---
 src/parser.c |  310 ++++++++++++++++++++++++++++++++++++++++++++++-----
 1 files changed, 279 insertions(+), 31 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index 8051fd7..1e5be4d 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -9,9 +9,12 @@
 #include "convolutional_layer.h"
 #include "activation_layer.h"
 #include "normalization_layer.h"
+#include "batchnorm_layer.h"
 #include "deconvolutional_layer.h"
 #include "connected_layer.h"
 #include "rnn_layer.h"
+#include "gru_layer.h"
+#include "crnn_layer.h"
 #include "maxpool_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
@@ -36,11 +39,14 @@
 int is_deconvolutional(section *s);
 int is_connected(section *s);
 int is_rnn(section *s);
+int is_gru(section *s);
+int is_crnn(section *s);
 int is_maxpool(section *s);
 int is_avgpool(section *s);
 int is_dropout(section *s);
 int is_softmax(section *s);
 int is_normalization(section *s);
+int is_batchnorm(section *s);
 int is_crop(section *s);
 int is_shortcut(section *s);
 int is_cost(section *s);
@@ -155,9 +161,11 @@
     if(!(h && w && c)) error("Layer before convolutional layer must output image.");
     int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
     int binary = option_find_int_quiet(options, "binary", 0);
+    int xnor = option_find_int_quiet(options, "xnor", 0);
 
-    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary);
+    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary, xnor);
     layer.flipped = option_find_int_quiet(options, "flipped", 0);
+    layer.dot = option_find_float_quiet(options, "dot", 0);
 
     char *weights = option_find_str(options, "weights", 0);
     char *biases = option_find_str(options, "biases", 0);
@@ -169,6 +177,21 @@
     return layer;
 }
 
+layer parse_crnn(list *options, size_params params)
+{
+    int output_filters = option_find_int(options, "output_filters",1);
+    int hidden_filters = option_find_int(options, "hidden_filters",1);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+
+    layer l = make_crnn_layer(params.batch, params.w, params.h, params.c, hidden_filters, output_filters, params.time_steps, activation, batch_normalize);
+
+    l.shortcut = option_find_int_quiet(options, "shortcut", 0);
+
+    return l;
+}
+
 layer parse_rnn(list *options, size_params params)
 {
     int output = option_find_int(options, "output",1);
@@ -185,6 +208,16 @@
     return l;
 }
 
+layer parse_gru(list *options, size_params params)
+{
+    int output = option_find_int(options, "output",1);
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+
+    layer l = make_gru_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize);
+
+    return l;
+}
+
 connected_layer parse_connected(list *options, size_params params)
 {
     int output = option_find_int(options, "output",1);
@@ -224,12 +257,14 @@
     layer.softmax = option_find_int(options, "softmax", 0);
     layer.sqrt = option_find_int(options, "sqrt", 0);
 
+    layer.max_boxes = option_find_int_quiet(options, "max",30);
     layer.coord_scale = option_find_float(options, "coord_scale", 1);
     layer.forced = option_find_int(options, "forced", 0);
     layer.object_scale = option_find_float(options, "object_scale", 1);
     layer.noobject_scale = option_find_float(options, "noobject_scale", 1);
     layer.class_scale = option_find_float(options, "class_scale", 1);
     layer.jitter = option_find_float(options, "jitter", .2);
+    layer.random = option_find_int_quiet(options, "random", 0);
     return layer;
 }
 
@@ -315,6 +350,12 @@
     return l;
 }
 
+layer parse_batchnorm(list *options, size_params params)
+{
+    layer l = make_batchnorm_layer(params.batch, params.w, params.h, params.c);
+    return l;
+}
+
 layer parse_shortcut(list *options, size_params params, network net)
 {
     char *l = option_find(options, "from");   
@@ -393,6 +434,7 @@
 
 learning_rate_policy get_policy(char *s)
 {
+    if (strcmp(s, "random")==0) return RANDOM;
     if (strcmp(s, "poly")==0) return POLY;
     if (strcmp(s, "constant")==0) return CONSTANT;
     if (strcmp(s, "step")==0) return STEP;
@@ -419,11 +461,14 @@
     net->w = option_find_int_quiet(options, "width",0);
     net->c = option_find_int_quiet(options, "channels",0);
     net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
+    net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2);
+    net->min_crop = option_find_int_quiet(options, "min_crop",net->w);
 
     if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
 
     char *policy_s = option_find_str(options, "policy", "constant");
     net->policy = get_policy(policy_s);
+    net->burn_in = option_find_int_quiet(options, "burn_in", 0);
     if(net->policy == STEP){
         net->step = option_find_int(options, "step", 1);
         net->scale = option_find_float(options, "scale", 1);
@@ -456,7 +501,7 @@
     } else if (net->policy == SIG){
         net->gamma = option_find_float(options, "gamma", 1);
         net->step = option_find_int(options, "step", 1);
-    } else if (net->policy == POLY){
+    } else if (net->policy == POLY || net->policy == RANDOM){
         net->power = option_find_float(options, "power", 1);
     }
     net->max_batches = option_find_int(options, "max_batches", 0);
@@ -482,6 +527,7 @@
     params.batch = net.batch;
     params.time_steps = net.time_steps;
 
+    size_t workspace_size = 0;
     n = n->next;
     int count = 0;
     free_section(s);
@@ -501,6 +547,10 @@
             l = parse_deconvolutional(options, params);
         }else if(is_rnn(s)){
             l = parse_rnn(options, params);
+        }else if(is_gru(s)){
+            l = parse_gru(options, params);
+        }else if(is_crnn(s)){
+            l = parse_crnn(options, params);
         }else if(is_connected(s)){
             l = parse_connected(options, params);
         }else if(is_crop(s)){
@@ -513,6 +563,8 @@
             l = parse_softmax(options, params);
         }else if(is_normalization(s)){
             l = parse_normalization(options, params);
+        }else if(is_batchnorm(s)){
+            l = parse_batchnorm(options, params);
         }else if(is_maxpool(s)){
             l = parse_maxpool(options, params);
         }else if(is_avgpool(s)){
@@ -536,6 +588,7 @@
         l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
         option_unused(options);
         net.layers[count] = l;
+        if (l.workspace_size > workspace_size) workspace_size = l.workspace_size;
         free_section(s);
         n = n->next;
         ++count;
@@ -549,9 +602,51 @@
     free_list(sections);
     net.outputs = get_network_output_size(net);
     net.output = get_network_output(net);
+    if(workspace_size){
+    //printf("%ld\n", workspace_size);
+#ifdef GPU
+        net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+#else
+        net.workspace = calloc(1, workspace_size);
+#endif
+    }
     return net;
 }
 
+LAYER_TYPE string_to_layer_type(char * type)
+{
+
+    if (strcmp(type, "[shortcut]")==0) return SHORTCUT;
+    if (strcmp(type, "[crop]")==0) return CROP;
+    if (strcmp(type, "[cost]")==0) return COST;
+    if (strcmp(type, "[detection]")==0) return DETECTION;
+    if (strcmp(type, "[local]")==0) return LOCAL;
+    if (strcmp(type, "[deconv]")==0
+            || strcmp(type, "[deconvolutional]")==0) return DECONVOLUTIONAL;
+    if (strcmp(type, "[conv]")==0
+            || strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL;
+    if (strcmp(type, "[activation]")==0) return ACTIVE;
+    if (strcmp(type, "[net]")==0
+            || strcmp(type, "[network]")==0) return NETWORK;
+    if (strcmp(type, "[crnn]")==0) return CRNN;
+    if (strcmp(type, "[gru]")==0) return GRU;
+    if (strcmp(type, "[rnn]")==0) return RNN;
+    if (strcmp(type, "[conn]")==0
+            || strcmp(type, "[connected]")==0) return CONNECTED;
+    if (strcmp(type, "[max]")==0
+            || strcmp(type, "[maxpool]")==0) return MAXPOOL;
+    if (strcmp(type, "[avg]")==0
+            || strcmp(type, "[avgpool]")==0) return AVGPOOL;
+    if (strcmp(type, "[dropout]")==0) return DROPOUT;
+    if (strcmp(type, "[lrn]")==0
+            || strcmp(type, "[normalization]")==0) return NORMALIZATION;
+    if (strcmp(type, "[batchnorm]")==0) return BATCHNORM;
+    if (strcmp(type, "[soft]")==0
+            || strcmp(type, "[softmax]")==0) return SOFTMAX;
+    if (strcmp(type, "[route]")==0) return ROUTE;
+    return BLANK;
+}
+
 int is_shortcut(section *s)
 {
     return (strcmp(s->type, "[shortcut]")==0);
@@ -591,6 +686,14 @@
     return (strcmp(s->type, "[net]")==0
             || strcmp(s->type, "[network]")==0);
 }
+int is_crnn(section *s)
+{
+    return (strcmp(s->type, "[crnn]")==0);
+}
+int is_gru(section *s)
+{
+    return (strcmp(s->type, "[gru]")==0);
+}
 int is_rnn(section *s)
 {
     return (strcmp(s->type, "[rnn]")==0);
@@ -621,6 +724,11 @@
             || strcmp(s->type, "[normalization]")==0);
 }
 
+int is_batchnorm(section *s)
+{
+    return (strcmp(s->type, "[batchnorm]")==0);
+}
+
 int is_softmax(section *s)
 {
     return (strcmp(s->type, "[soft]")==0
@@ -705,6 +813,71 @@
     fclose(fp);
 }
 
+void save_convolutional_weights_binary(layer l, FILE *fp)
+{
+#ifdef GPU
+    if(gpu_index >= 0){
+        pull_convolutional_layer(l);
+    }
+#endif
+    binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
+    int size = l.c*l.size*l.size;
+    int i, j, k;
+    fwrite(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize){
+        fwrite(l.scales, sizeof(float), l.n, fp);
+        fwrite(l.rolling_mean, sizeof(float), l.n, fp);
+        fwrite(l.rolling_variance, sizeof(float), l.n, fp);
+    }
+    for(i = 0; i < l.n; ++i){
+        float mean = l.binary_filters[i*size];
+        if(mean < 0) mean = -mean;
+        fwrite(&mean, sizeof(float), 1, fp);
+        for(j = 0; j < size/8; ++j){
+            int index = i*size + j*8;
+            unsigned char c = 0;
+            for(k = 0; k < 8; ++k){
+                if (j*8 + k >= size) break;
+                if (l.binary_filters[index + k] > 0) c = (c | 1<<k);
+            }
+            fwrite(&c, sizeof(char), 1, fp);
+        }
+    }
+}
+
+void save_convolutional_weights(layer l, FILE *fp)
+{
+    if(l.binary){
+        //save_convolutional_weights_binary(l, fp);
+        //return;
+    }
+#ifdef GPU
+    if(gpu_index >= 0){
+        pull_convolutional_layer(l);
+    }
+#endif
+    int num = l.n*l.c*l.size*l.size;
+    fwrite(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize){
+        fwrite(l.scales, sizeof(float), l.n, fp);
+        fwrite(l.rolling_mean, sizeof(float), l.n, fp);
+        fwrite(l.rolling_variance, sizeof(float), l.n, fp);
+    }
+    fwrite(l.filters, sizeof(float), num, fp);
+}
+
+void save_batchnorm_weights(layer l, FILE *fp)
+{
+#ifdef GPU
+    if(gpu_index >= 0){
+        pull_batchnorm_layer(l);
+    }
+#endif
+    fwrite(l.scales, sizeof(float), l.c, fp);
+    fwrite(l.rolling_mean, sizeof(float), l.c, fp);
+    fwrite(l.rolling_variance, sizeof(float), l.c, fp);
+}
+
 void save_connected_weights(layer l, FILE *fp)
 {
 #ifdef GPU
@@ -739,25 +912,26 @@
     for(i = 0; i < net.n && i < cutoff; ++i){
         layer l = net.layers[i];
         if(l.type == CONVOLUTIONAL){
-#ifdef GPU
-            if(gpu_index >= 0){
-                pull_convolutional_layer(l);
-            }
-#endif
-            int num = l.n*l.c*l.size*l.size;
-            fwrite(l.biases, sizeof(float), l.n, fp);
-            if (l.batch_normalize){
-                fwrite(l.scales, sizeof(float), l.n, fp);
-                fwrite(l.rolling_mean, sizeof(float), l.n, fp);
-                fwrite(l.rolling_variance, sizeof(float), l.n, fp);
-            }
-            fwrite(l.filters, sizeof(float), num, fp);
+            save_convolutional_weights(l, fp);
         } if(l.type == CONNECTED){
             save_connected_weights(l, fp);
+        } if(l.type == BATCHNORM){
+            save_batchnorm_weights(l, fp);
         } if(l.type == RNN){
             save_connected_weights(*(l.input_layer), fp);
             save_connected_weights(*(l.self_layer), fp);
             save_connected_weights(*(l.output_layer), fp);
+        } if(l.type == GRU){
+            save_connected_weights(*(l.input_z_layer), fp);
+            save_connected_weights(*(l.input_r_layer), fp);
+            save_connected_weights(*(l.input_h_layer), fp);
+            save_connected_weights(*(l.state_z_layer), fp);
+            save_connected_weights(*(l.state_r_layer), fp);
+            save_connected_weights(*(l.state_h_layer), fp);
+        } if(l.type == CRNN){
+            save_convolutional_weights(*(l.input_layer), fp);
+            save_convolutional_weights(*(l.self_layer), fp);
+            save_convolutional_weights(*(l.output_layer), fp);
         } if(l.type == LOCAL){
 #ifdef GPU
             if(gpu_index >= 0){
@@ -797,10 +971,15 @@
     if(transpose){
         transpose_matrix(l.weights, l.inputs, l.outputs);
     }
+    //printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs));
+    //printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs));
     if (l.batch_normalize && (!l.dontloadscales)){
         fread(l.scales, sizeof(float), l.outputs, fp);
         fread(l.rolling_mean, sizeof(float), l.outputs, fp);
         fread(l.rolling_variance, sizeof(float), l.outputs, fp);
+        //printf("Scales: %f mean %f variance\n", mean_array(l.scales, l.outputs), variance_array(l.scales, l.outputs));
+        //printf("rolling_mean: %f mean %f variance\n", mean_array(l.rolling_mean, l.outputs), variance_array(l.rolling_mean, l.outputs));
+        //printf("rolling_variance: %f mean %f variance\n", mean_array(l.rolling_variance, l.outputs), variance_array(l.rolling_variance, l.outputs));
     }
 #ifdef GPU
     if(gpu_index >= 0){
@@ -809,6 +988,74 @@
 #endif
 }
 
+void load_batchnorm_weights(layer l, FILE *fp)
+{
+    fread(l.scales, sizeof(float), l.c, fp);
+    fread(l.rolling_mean, sizeof(float), l.c, fp);
+    fread(l.rolling_variance, sizeof(float), l.c, fp);
+#ifdef GPU
+    if(gpu_index >= 0){
+        push_batchnorm_layer(l);
+    }
+#endif
+}
+
+void load_convolutional_weights_binary(layer l, FILE *fp)
+{
+    fread(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize && (!l.dontloadscales)){
+        fread(l.scales, sizeof(float), l.n, fp);
+        fread(l.rolling_mean, sizeof(float), l.n, fp);
+        fread(l.rolling_variance, sizeof(float), l.n, fp);
+    }
+    int size = l.c*l.size*l.size;
+    int i, j, k;
+    for(i = 0; i < l.n; ++i){
+        float mean = 0;
+        fread(&mean, sizeof(float), 1, fp);
+        for(j = 0; j < size/8; ++j){
+            int index = i*size + j*8;
+            unsigned char c = 0;
+            fread(&c, sizeof(char), 1, fp);
+            for(k = 0; k < 8; ++k){
+                if (j*8 + k >= size) break;
+                l.filters[index + k] = (c & 1<<k) ? mean : -mean;
+            }
+        }
+    }
+#ifdef GPU
+    if(gpu_index >= 0){
+        push_convolutional_layer(l);
+    }
+#endif
+}
+
+void load_convolutional_weights(layer l, FILE *fp)
+{
+    if(l.binary){
+        //load_convolutional_weights_binary(l, fp);
+        //return;
+    }
+    int num = l.n*l.c*l.size*l.size;
+    fread(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize && (!l.dontloadscales)){
+        fread(l.scales, sizeof(float), l.n, fp);
+        fread(l.rolling_mean, sizeof(float), l.n, fp);
+        fread(l.rolling_variance, sizeof(float), l.n, fp);
+    }
+    fread(l.filters, sizeof(float), num, fp);
+    if (l.flipped) {
+        transpose_matrix(l.filters, l.c*l.size*l.size, l.n);
+    }
+    //if (l.binary) binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.filters);
+#ifdef GPU
+    if(gpu_index >= 0){
+        push_convolutional_layer(l);
+    }
+#endif
+}
+
+
 void load_weights_upto(network *net, char *filename, int cutoff)
 {
     fprintf(stderr, "Loading weights from %s...", filename);
@@ -830,22 +1077,7 @@
         layer l = net->layers[i];
         if (l.dontload) continue;
         if(l.type == CONVOLUTIONAL){
-            int num = l.n*l.c*l.size*l.size;
-            fread(l.biases, sizeof(float), l.n, fp);
-            if (l.batch_normalize && (!l.dontloadscales)){
-                fread(l.scales, sizeof(float), l.n, fp);
-                fread(l.rolling_mean, sizeof(float), l.n, fp);
-                fread(l.rolling_variance, sizeof(float), l.n, fp);
-            }
-            fread(l.filters, sizeof(float), num, fp);
-            if (l.flipped) {
-                transpose_matrix(l.filters, l.c*l.size*l.size, l.n);
-            }
-#ifdef GPU
-            if(gpu_index >= 0){
-                push_convolutional_layer(l);
-            }
-#endif
+            load_convolutional_weights(l, fp);
         }
         if(l.type == DECONVOLUTIONAL){
             int num = l.n*l.c*l.size*l.size;
@@ -860,11 +1092,27 @@
         if(l.type == CONNECTED){
             load_connected_weights(l, fp, transpose);
         }
+        if(l.type == BATCHNORM){
+            load_batchnorm_weights(l, fp);
+        }
+        if(l.type == CRNN){
+            load_convolutional_weights(*(l.input_layer), fp);
+            load_convolutional_weights(*(l.self_layer), fp);
+            load_convolutional_weights(*(l.output_layer), fp);
+        }
         if(l.type == RNN){
             load_connected_weights(*(l.input_layer), fp, transpose);
             load_connected_weights(*(l.self_layer), fp, transpose);
             load_connected_weights(*(l.output_layer), fp, transpose);
         }
+        if(l.type == GRU){
+            load_connected_weights(*(l.input_z_layer), fp, transpose);
+            load_connected_weights(*(l.input_r_layer), fp, transpose);
+            load_connected_weights(*(l.input_h_layer), fp, transpose);
+            load_connected_weights(*(l.state_z_layer), fp, transpose);
+            load_connected_weights(*(l.state_r_layer), fp, transpose);
+            load_connected_weights(*(l.state_h_layer), fp, transpose);
+        }
         if(l.type == LOCAL){
             int locations = l.out_w*l.out_h;
             int size = l.size*l.size*l.c*l.n*locations;

--
Gitblit v1.10.0