From a723e1c62a27aeb39aaf7fcdeb3beb4e89fba32d Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Wed, 15 Aug 2018 20:52:09 +0000
Subject: [PATCH] Merge pull request #766 from HotChick91/AlexeyAB-mask

---
 src/gemm.c | 1465 ++++++++++++++++++++++++++++++++++++++++++++++++++++------
 1 files changed, 1,311 insertions(+), 154 deletions(-)

diff --git a/src/gemm.c b/src/gemm.c
index 0efefd0..2fd7f50 100644
--- a/src/gemm.c
+++ b/src/gemm.c
@@ -1,12 +1,17 @@
 #include "gemm.h"
 #include "utils.h"
+#include "im2col.h"
 #include "cuda.h"
 #include <stdlib.h>
 #include <stdio.h>
 #include <math.h>
 
-void gemm_bin(int M, int N, int K, float ALPHA, 
-        char  *A, int lda, 
+#if defined(_OPENMP)
+#include <omp.h>
+#endif
+
+void gemm_bin(int M, int N, int K, float ALPHA,
+        char  *A, int lda,
         float *B, int ldb,
         float *C, int ldc)
 {
@@ -62,8 +67,8 @@
 }
 
 
-void gemm(int TA, int TB, int M, int N, int K, float ALPHA, 
-        float *A, int lda, 
+void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
+        float *A, int lda,
         float *B, int ldb,
         float BETA,
         float *C, int ldc)
@@ -71,6 +76,234 @@
     gemm_cpu( TA,  TB,  M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
 }
 
+
+//--------------------------------------------
+// XNOR bitwise GEMM for binary neural network
+//--------------------------------------------
+
+#include <stdint.h>
+
+static inline unsigned char xnor(unsigned char a, unsigned char b) {
+    //return a == b;
+    return !(a^b);
+}
+
+// INT-32
+static inline uint32_t get_bit_int32(uint32_t const*const src, size_t index) {
+    size_t src_i = index / 32;
+    int src_shift = index % 32;
+    unsigned char val = (src[src_i] & (1 << src_shift)) > 0;
+    return val;
+}
+
+static inline uint32_t xnor_int32(uint32_t a, uint32_t b) {
+    return ~(a^b);
+}
+
+static inline uint64_t xnor_int64(uint64_t a, uint64_t b) {
+    return ~(a^b);
+}
+
+
+static inline uint32_t fill_bit_int32(char src) {
+    if (src == 0) return 0x00000000;
+    else return  0xFFFFFFFF;
+}
+
+static inline uint64_t fill_bit_int64(char src) {
+    if (src == 0) return 0x0000000000000000;
+    else return  0xFFFFFFFFFFFFFFFF;
+}
+
+void binary_int32_printf(uint32_t src) {
+    int i;
+    for (i = 0; i < 32; ++i) {
+        if (src & 1) printf("1");
+        else printf("0");
+        src = src >> 1;
+    }
+    printf("\n");
+}
+
+void binary_int64_printf(uint64_t src) {
+    int i;
+    for (i = 0; i < 64; ++i) {
+        if (src & 1) printf("1");
+        else printf("0");
+        src = src >> 1;
+    }
+    printf("\n");
+}
+
+/*
+void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
+    unsigned char *A, int lda,
+    unsigned char *B, int ldb,
+    float *C, int ldc, float *mean_arr)
+{
+    int *count_arr = calloc(M*N, sizeof(int));
+
+    int i, j, k;
+    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
+        for (k = 0; k < K; ++k) {   // l.size*l.size*l.c - one filter size [27 - 9216]
+            char a_bit = get_bit(A, i*lda + k);
+
+            for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+                char b_bit = get_bit(B, k*ldb + j);
+                count_arr[i*ldc + j] += xnor(a_bit, b_bit);
+            }
+        }
+    }
+
+    for (i = 0; i < M; ++i) {
+        float mean_val = mean_arr[i];
+        for (j = 0; j < N; ++j) {
+            C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
+        }
+    }
+    free(count_arr);
+}
+*/
+
+/*
+void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
+    unsigned char *A, int lda,
+    unsigned char *B, int ldb,
+    float *C, int ldc, float *mean_arr)
+{
+    int *count_arr = calloc(M*N, sizeof(int));
+
+    int i, j, k;
+    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
+        for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+            for (k = 0; k < K; ++k) {   // l.size*l.size*l.c - one filter size [27 - 9216]
+                char a_bit = get_bit(A, i*lda + k);
+                char b_bit = get_bit(B, j*ldb + k);
+                count_arr[i*ldc + j] += xnor(a_bit, b_bit);
+            }
+        }
+    }
+
+    for (i = 0; i < M; ++i) {
+        float mean_val = mean_arr[i];
+        for (j = 0; j < N; ++j) {
+            C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
+        }
+    }
+    free(count_arr);
+}
+*/
+
+/*
+void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
+    unsigned char *A, int lda,
+    unsigned char *B, int ldb,
+    float *C, int ldc, float *mean_arr)
+{
+    int *count_arr = calloc(M*N, sizeof(int));
+
+    int i, j, k, h;
+
+#pragma omp parallel for
+    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
+        for (k = 0; k < K; ++k) {   // l.size*l.size*l.c - one filter size [27 - 9216]
+            const char a_bit = get_bit(A, i*lda + k);
+            uint64_t a_bit64 = fill_bit_int64(a_bit);
+            int  k_ldb = k*ldb;
+
+            for (j = 0; j < N; j += 64) { // out_h*out_w - one channel output size [169 - 173056]
+                if ((N - j > 64) && (k_ldb % 8 == 0)) {
+                    uint64_t b_bit64 = *((uint64_t *)(B + (k_ldb + j) / 8));
+                    uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
+                    //printf("\n %d \n",__builtin_popcountll(c_bit64)); // gcc
+                    printf("\n %d \n", __popcnt64(c_bit64));    // msvs
+
+                    int h;
+                    for (h = 0; h < 64; ++h)
+                        if ((c_bit64 >> h) & 1) count_arr[i*ldc + j + h] += 1;
+
+                    //binary_int64_printf(a_bit64);
+                    //binary_int64_printf(b_bit64);
+                    //binary_int64_printf(c_bit64);
+                }
+                else {
+                    for (; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+                        char b_bit = get_bit(B, k_ldb + j);
+                        if (xnor(a_bit, b_bit)) count_arr[i*ldc + j] += 1;
+                    }
+                }
+
+            }
+        }
+    }
+
+    if (mean_arr) {
+        //int K_2 = K / 2;
+        for (i = 0; i < M; ++i) {
+            float mean_val = mean_arr[i];
+            //float mean_val2 = 2 * mean_val;
+            for (j = 0; j < N; ++j) {
+                C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
+                //C[i*ldc + j] = (count_arr[i*ldc + j] - K_2) *mean_val2;
+            }
+        }
+    }
+    else {
+        for (i = 0; i < M; ++i) {
+            for (j = 0; j < N; ++j) {
+                C[i*ldc + j] = count_arr[i*ldc + j] - K / 2;
+            }
+        }
+    }
+
+    free(count_arr);
+
+    //getchar();
+}
+*/
+
+
+/*
+void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
+    unsigned char *A, int lda,
+    unsigned char *B, int ldb,
+    float *C, int ldc, float *mean_arr)
+{
+    int i, j, k, h;
+
+#pragma omp parallel for
+    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
+        float mean_val = mean_arr[i];
+
+        for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+            int count = 0;
+
+            for (k = 0; k < K; k += 64) {   // l.size*l.size*l.c - one filter size [27 - 9216]
+                uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8));
+                uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
+                uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
+
+#ifdef WIN32
+                int tmp_count = __popcnt64(c_bit64);
+#else
+                int tmp_count = __builtin_popcountll(c_bit64);
+#endif
+
+                if (K - k < 64)  tmp_count = tmp_count - (64 - (K - k));    // remove extra bits
+                count += tmp_count;
+                //binary_int64_printf(c_bit64);
+                //printf(", count = %d \n\n", tmp_count);
+            }
+
+            C[i*ldc + j] = (2 * count - K) * mean_val;
+        }
+    }
+}
+*/
+
+//----------------------------
+
+
 #if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64)
 
 #define OSXSAVEFlag (1UL<<27)
@@ -79,142 +312,1064 @@
 #define CLMULFlag   ((1UL<< 1)|AVXFlag|OSXSAVEFlag)
 #define VAESFlag    ((1UL<<25)|AVXFlag|OSXSAVEFlag)
 
-#include <stdint.h>
-
 #ifdef _WIN64
 #include <intrin.h>
 #include <ammintrin.h>
 #include <immintrin.h>
 #include <smmintrin.h>
 
-#else	// Linux GCC/Clang
+#if defined(_MSC_VER) && _MSC_VER <= 1900
+static inline __int32 _mm256_extract_epi64(__m256i a, const int index) {
+    return a.m256i_i64[index];
+}
+
+static inline __int32 _mm256_extract_epi32(__m256i a, const int index) {
+    return a.m256i_i32[index];
+}
+
+#endif
+
+static inline float _castu32_f32(uint32_t a) {
+    return *((float *)&a);
+}
+
+static inline float _mm256_extract_float32(__m256 a, const int index) {
+    return a.m256_f32[index];
+}
+
+#else    // Linux GCC/Clang
 #include <x86intrin.h>
 #include <ammintrin.h>
 #include <immintrin.h>
 #include <smmintrin.h>
+#include <cpuid.h>
+
+static inline float _castu32_f32(uint32_t a) {
+    return *((float *)&a);
+}
+
+static inline float _mm256_extract_float32(__m256 a, const int index) {
+    return _castu32_f32(_mm256_extract_epi32(_mm256_castps_si256(a), index));
+}
 
 void asm_cpuid(uint32_t* abcd, uint32_t eax)
 {
-	uint32_t ebx = 0, edx = 0, ecx = 0;
+    uint32_t ebx = 0, edx = 0, ecx = 0;
 
-	// EBX is saved to EDI and later restored
-	__asm__("movl %%ebx, %%edi;"
-		"cpuid;"
-		"xchgl %%ebx, %%edi;"
-		: "=D"(ebx),
-		"+a"(eax), "+c"(ecx), "=d"(edx));
+    // EBX is saved to EDI and later restored
+    __asm__("movl %%ebx, %%edi;"
+        "cpuid;"
+        "xchgl %%ebx, %%edi;"
+        : "=D"(ebx),
+        "+a"(eax), "+c"(ecx), "=d"(edx));
 
-	abcd[0] = eax;
-	abcd[1] = ebx;
-	abcd[2] = ecx;
-	abcd[3] = edx;
+    abcd[0] = eax;
+    abcd[1] = ebx;
+    abcd[2] = ecx;
+    abcd[3] = edx;
 }
+
 #endif
 
 int simd_detect_x86(unsigned int idFeature)
 {
-	uint32_t regs[4];	// EAX, EBX, ECX, EDX;
+    uint32_t regs[4];    // EAX, EBX, ECX, EDX;
 #ifdef _WIN32
-	__cpuid(regs, 0);
-	if (regs[0] > 1U) __cpuid(regs, 1);
+    __cpuid(regs, 0);
+    if (regs[0] > 1U) __cpuid(regs, 1);
 #else
-	asm_cpuid(regs, 0);
-	if (regs[0] > 1U) asm_cpuid(regs, 0);
+    __get_cpuid(0, &regs[0], &regs[1], &regs[2], &regs[3]);
+    if(regs[0] > 1U) __get_cpuid(1, &regs[0], &regs[1], &regs[2], &regs[3]);
 #endif
 
-	if ((regs[2] & idFeature) != idFeature)
-		return 0;
-	return 1;
+    if ((regs[2] & idFeature) != idFeature)
+        return 0;
+    return 1;
 }
 
 int is_fma_avx() {
-	static int result = -1;
-	if (result == -1) {
-		result = simd_detect_x86(AVXFlag);
-		if (result == 1) printf(" Used AVX \n");
-		else printf(" Not used AVX \n");
-	}
-	return result;
+    static int result = -1;
+    if (result == -1) {
+        result = simd_detect_x86(AVXFlag);
+        if (result == 1) printf(" Used AVX \n");
+        else printf(" Not used AVX \n");
+    }
+    return result;
 }
 
 // https://software.intel.com/sites/landingpage/IntrinsicsGuide
 void gemm_nn(int M, int N, int K, float ALPHA,
-	float *A, int lda,
-	float *B, int ldb,
-	float *C, int ldc)
+    float *A, int lda,
+    float *B, int ldb,
+    float *C, int ldc)
 {
-	int i, j, k;
-	if (is_fma_avx() == 1) {	// AVX
-		for (i = 0; i < M; ++i) {
-			for (k = 0; k < K; ++k) {
-				float A_PART = ALPHA*A[i*lda + k];
-				__m256 a256, b256, c256, result256;	// AVX
-				a256 = _mm256_set1_ps(A_PART);
-				for (j = 0; j < N - 8; j += 8) {
-					b256 = _mm256_loadu_ps(&B[k*ldb + j]);
-					c256 = _mm256_loadu_ps(&C[i*ldc + j]);
-					// FMA - Intel Haswell (2013), AMD Piledriver (2012)
-					//result256 = _mm256_fmadd_ps(a256, b256, c256);
-					result256 = _mm256_mul_ps(a256, b256);
-					result256 = _mm256_add_ps(result256, c256);
-					_mm256_storeu_ps(&C[i*ldc + j], result256);
-				}
+    int i, j, k;
+    if (is_fma_avx() == 1) {    // AVX
+        for (i = 0; i < M; ++i) {
+            for (k = 0; k < K; ++k) {
+                float A_PART = ALPHA*A[i*lda + k];
+                __m256 a256, b256, c256, result256;    // AVX
+                a256 = _mm256_set1_ps(A_PART);
+                for (j = 0; j < N - 8; j += 8) {
+                    b256 = _mm256_loadu_ps(&B[k*ldb + j]);
+                    c256 = _mm256_loadu_ps(&C[i*ldc + j]);
+                    // FMA - Intel Haswell (2013), AMD Piledriver (2012)
+                    //result256 = _mm256_fmadd_ps(a256, b256, c256);
+                    result256 = _mm256_mul_ps(a256, b256);
+                    result256 = _mm256_add_ps(result256, c256);
+                    _mm256_storeu_ps(&C[i*ldc + j], result256);
+                }
 
-				int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8;
-				for (j = prev_end; j < N; ++j)
-					C[i*ldc + j] += A_PART*B[k*ldb + j];
-			}
-		}
-	}
-	else {
-		for (i = 0; i < M; ++i) {
-			for (k = 0; k < K; ++k) {
-				register float A_PART = ALPHA*A[i*lda + k];
-				for (j = 0; j < N; ++j) {
-					C[i*ldc + j] += A_PART*B[k*ldb + j];
-				}
-				/* // SSE
-				__m128 a128, b128, c128, result128;	// SSE
-				a128 = _mm_set1_ps(A_PART);
-				for (j = 0; j < N - 4; j += 4) {
-				b128 = _mm_loadu_ps(&B[k*ldb + j]);
-				c128 = _mm_loadu_ps(&C[i*ldc + j]);
-				//result128 = _mm_fmadd_ps(a128, b128, c128);
-				result128 = _mm_mul_ps(a128, b128);
-				result128 = _mm_add_ps(result128, c128);
-				_mm_storeu_ps(&C[i*ldc + j], result128);
-				}
+                int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8;
+                for (j = prev_end; j < N; ++j)
+                    C[i*ldc + j] += A_PART*B[k*ldb + j];
+            }
+        }
+    }
+    else {
+        for (i = 0; i < M; ++i) {
+            for (k = 0; k < K; ++k) {
+                register float A_PART = ALPHA*A[i*lda + k];
+                for (j = 0; j < N; ++j) {
+                    C[i*ldc + j] += A_PART*B[k*ldb + j];
+                }
+                /* // SSE
+                __m128 a128, b128, c128, result128;    // SSE
+                a128 = _mm_set1_ps(A_PART);
+                for (j = 0; j < N - 4; j += 4) {
+                b128 = _mm_loadu_ps(&B[k*ldb + j]);
+                c128 = _mm_loadu_ps(&C[i*ldc + j]);
+                //result128 = _mm_fmadd_ps(a128, b128, c128);
+                result128 = _mm_mul_ps(a128, b128);
+                result128 = _mm_add_ps(result128, c128);
+                _mm_storeu_ps(&C[i*ldc + j], result128);
+                }
 
-				int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4;
-				for (j = prev_end; j < N; ++j){
-				C[i*ldc + j] += A_PART*B[k*ldb + j];
-				}
-				*/
-			}
-		}
-	}
+                int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4;
+                for (j = prev_end; j < N; ++j){
+                C[i*ldc + j] += A_PART*B[k*ldb + j];
+                }
+                */
+            }
+        }
+    }
 }
+
+
+void convolution_2d_old(int w, int h, int ksize, int n, int c, int pad, int stride,
+    float *weights, float *input, float *output)
+{
+    int out_h = (h + 2 * pad - ksize) / stride + 1;    // output_height=input_height for stride=1 and pad=1
+    int out_w = (w + 2 * pad - ksize) / stride + 1;    // output_width=input_width for stride=1 and pad=1
+    int i, f, j;
+
+    int fil;
+    // filter index
+#pragma omp parallel for      // "omp parallel for" - automatic parallelization of loop by using OpenMP
+    for (fil = 0; fil < n; ++fil) {
+        int chan, y, x, f_y, f_x;
+        // channel index
+        for (chan = 0; chan < c; ++chan)
+            // input - y
+            for (y = 0; y < h; ++y)
+                // input - x
+                for (x = 0; x < w; ++x)
+                {
+                    int const output_index = fil*w*h + y*w + x;
+                    int const weights_pre_index = fil*c*ksize*ksize + chan*ksize*ksize;
+                    int const input_pre_index = chan*w*h;
+                    float sum = 0;
+
+                    // filter - y
+                    for (f_y = 0; f_y < ksize; ++f_y)
+                    {
+                        int input_y = y + f_y - pad;
+                        // filter - x
+                        for (f_x = 0; f_x < ksize; ++f_x)
+                        {
+                            int input_x = x + f_x - pad;
+                            if (input_y < 0 || input_x < 0 || input_y >= h || input_x >= w) continue;
+
+                            int input_index = input_pre_index + input_y*w + input_x;
+                            int weights_index = weights_pre_index + f_y*ksize + f_x;
+
+                            sum += input[input_index] * weights[weights_index];
+                        }
+                    }
+                    // l.output[filters][width][height] +=
+                    //        state.input[channels][width][height] *
+                    //        l.weights[filters][channels][filter_width][filter_height];
+                    output[output_index] += sum;
+                }
+    }
+}
+
+void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride,
+    float *weights, float *input, float *output, float *mean)
+{
+    int out_h = (h + 2 * pad - ksize) / stride + 1;    // output_height=input_height for stride=1 and pad=1
+    int out_w = (w + 2 * pad - ksize) / stride + 1;    // output_width=input_width for stride=1 and pad=1
+    int i, f, j;
+
+#if defined(_OPENMP)
+    static int max_num_threads = 0;
+    if (max_num_threads == 0) {
+        max_num_threads = omp_get_max_threads();
+        omp_set_num_threads(4);// max_num_threads / 2);
+    }
+#endif
+
+    //convolution_2d_old(w, h, ksize, n, c, pad, stride, weights, input, output);
+
+    __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
+    for (i = 0; i < ksize*ksize*n*c; i+=8) {
+        *((__m256*)&weights[i]) = _mm256_and_ps(*((__m256*)&weights[i]), _mm256_castsi256_ps(all256_sing1));
+    }
+
+    for (i = 0; i < w*h*c; i += 8) {
+        //*((__m256*)&input[i]) = _mm256_and_ps(*((__m256*)&input[i]), _mm256_castsi256_ps(all256_sing1));
+    }
+
+
+    //__m256i all256_last_zero = _mm256_set1_epi32(0xFFFFFFFF);
+    //all256_last_zero.m256i_i32[7] = 0;
+    __m256i all256_last_zero =
+        _mm256_set_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0);
+
+    __m256i idx256 = _mm256_set_epi32(0, 7, 6, 5, 4, 3, 2, 1);
+    //__m256 all256_sing1 = _mm256_set1_ps(0x80000000);
+    __m256 all256_one = _mm256_set1_ps(1);
+    __m256i all256i_one = _mm256_set1_epi32(1);
+
+    ///__m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i]));
+    ///__m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats
+
+    int fil;
+    // filter index
+#pragma omp parallel for      // "omp parallel for" - automatic parallelization of loop by using OpenMP
+    for (fil = 0; fil < n; ++fil) {
+        int chan, y, x, f_y, f_x;
+        float cur_mean = fabs(mean[fil]);
+        __m256 mean256 = _mm256_set1_ps(cur_mean);
+        // channel index
+        //for (chan = 0; chan < c; ++chan)
+            // input - y
+            for (y = 0; y < h; ++y)
+                // input - x
+                for (x = 0; x < w-8; x+=8)
+                {
+                    int const output_index = fil*w*h + y*w + x;
+                    float sum = 0;
+                    __m256 sum256 = _mm256_set1_ps(0);
+
+                    for (chan = 0; chan < c; ++chan) {
+                        int const weights_pre_index = fil*c*ksize*ksize + chan*ksize*ksize;
+                        int const input_pre_index = chan*w*h;
+
+
+                        // filter - y
+                        for (f_y = 0; f_y < ksize; ++f_y)
+                        {
+                            int input_y = y + f_y - pad;
+                            //__m256 in = *((__m256*)&input[input_pre_index + input_y*w]);
+                            if (input_y < 0 || input_y >= h) continue;
+                            //__m256 in = _mm256_loadu_ps(&input[input_pre_index + input_y*w + x - pad]);
+
+                            // filter - x
+                            for (f_x = 0; f_x < ksize; ++f_x)
+                            {
+                                int input_x = x + f_x - pad;
+                                //if (input_y < 0 || input_x < 0 || input_y >= h || input_x >= w) continue;
+
+                                int input_index = input_pre_index + input_y*w + input_x;
+                                int weights_index = weights_pre_index + f_y*ksize + f_x;
+                                //if (input_y < 0 || input_y >= h) continue;
+
+                                //sum += input[input_index] * weights[weights_index];
+
+                                __m256 in = *((__m256*)&input[input_index]);
+                                __m256 w = _mm256_set1_ps(weights[weights_index]);
+                                //__m256 w_sign = _mm256_and_ps(w, _mm256_castsi256_ps(all256_sing1)); // check sign in 8 x 32-bit floats
+                                __m256 xor256 = _mm256_xor_ps(w, in);
+                                //printf("\n xor256_1 = %f, xor256_2 = %f \n", xor256.m256_f32[0], xor256.m256_f32[1]);
+                                //printf("\n in = %f, w = %f, xor256 = %f \n", in.m256_f32[0], w_sign.m256_f32[0], xor256.m256_f32[0]);
+
+                                //__m256 pn1 = _mm256_and_ps(_mm256_castsi256_ps(all256i_one), xor256);
+
+
+                                //sum256 = xor256;
+                                sum256 = _mm256_add_ps(xor256, sum256);
+                                //printf("\n --- \n");
+                                //printf("\n 0 = %f, 1 = %f, 2 = %f, 3 = %f, 4 = %f, 5 = %f, 6 = %f, 7 = %f \n", in.m256_f32[0], in.m256_f32[1], in.m256_f32[2], in.m256_f32[3], in.m256_f32[4], in.m256_f32[5], in.m256_f32[6], in.m256_f32[7]);
+
+                                if (f_x < ksize-1) {
+                                    //in = _mm256_permutevar8x32_ps(in, idx256);
+                                    //in = _mm256_and_ps(in, _mm256_castsi256_ps(all256_last_zero));
+                                }
+                            }
+                        }
+                    }
+                    // l.output[filters][width][height] +=
+                    //        state.input[channels][width][height] *
+                    //        l.weights[filters][channels][filter_width][filter_height];
+                    //output[output_index] += sum;
+
+                    sum256 = _mm256_mul_ps(sum256, mean256);
+                    //printf("\n cur_mean = %f, sum256 = %f, sum256 = %f, in = %f \n",
+                    //    cur_mean, sum256.m256_f32[0], sum256.m256_f32[1], input[input_pre_index]);
+
+                    //__m256 out = *((__m256*)&output[output_index]);
+                    //out = _mm256_add_ps(out, sum256);
+                    //*((__m256*)&output[output_index]) = out;
+                    *((__m256*)&output[output_index]) = sum256;
+
+                    //_mm256_storeu_ps(&C[i*ldc + j], result256);
+                }
+    }
+}
+
+
+
+// http://graphics.stanford.edu/~seander/bithacks.html
+// https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register
+// https://arxiv.org/pdf/1611.07612.pdf
+
+static inline int popcnt128(__m128i n) {
+    const __m128i n_hi = _mm_unpackhi_epi64(n, n);
+#ifdef _MSC_VER
+    return __popcnt64(_mm_cvtsi128_si64(n)) + __popcnt64(_mm_cvtsi128_si64(n_hi));
+#else
+    return __popcntq(_mm_cvtsi128_si64(n)) + __popcntq(_mm_cvtsi128_si64(n_hi));
+#endif
+}
+
+static inline int popcnt256(__m256i n) {
+    return popcnt128(_mm256_extractf128_si256(n, 0)) + popcnt128(_mm256_extractf128_si256(n, 1));
+}
+
+static inline __m256i count256(__m256i v) {
+    __m256i lookup =
+        _mm256_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2,
+            2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 1, 2, 2, 3,
+            1, 2, 2, 3, 2, 3, 3, 4);
+
+    __m256i low_mask = _mm256_set1_epi8(0x0f);
+
+    __m256i lo = _mm256_and_si256(v, low_mask);
+    __m256i hi = _mm256_and_si256(_mm256_srli_epi32(v, 4), low_mask);
+    __m256i popcnt1 = _mm256_shuffle_epi8(lookup, lo);
+    __m256i popcnt2 = _mm256_shuffle_epi8(lookup, hi);
+    __m256i total = _mm256_add_epi8(popcnt1, popcnt2);
+
+    return _mm256_sad_epu8(total, _mm256_setzero_si256());
+}
+
+static inline int popcnt256_custom(__m256i n) {
+    __m256i val = count256(n);
+
+    //return val.m256i_i64[0] +
+    //val.m256i_i64[1] +
+    //val.m256i_i64[2] +
+    //val.m256i_i64[3];
+    return _mm256_extract_epi64(val, 0)
+        + _mm256_extract_epi64(val, 1)
+        + _mm256_extract_epi64(val, 2)
+        + _mm256_extract_epi64(val, 3);
+}
+
+// 5x times faster than gemm()-float32
+// further optimizations: do mean-mult only for the last layer
+void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
+    unsigned char *A, int lda,
+    unsigned char *B, int ldb,
+    float *C, int ldc, float *mean_arr)
+{
+    int i;
+
+#if defined(_OPENMP)
+    static int max_num_threads = 0;
+    if (max_num_threads == 0) {
+        max_num_threads = omp_get_max_threads();
+        //omp_set_num_threads(max_num_threads / 2);
+    }
+#endif
+
+    #pragma omp parallel for
+    for (i = 0; i < M; ++i)
+    {   // l.n - filters [16 - 55 - 1024]
+        float mean_val = mean_arr[i];
+        int j, k;
+        __m256i all_1 = _mm256_set1_epi8(255);
+
+        for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+            int count = 0;
+            const int bit_step = 256;
+            __m256i count_sum = _mm256_set1_epi8(0);
+
+            for (k = 0; k < K; k += bit_step) {   // l.size*l.size*l.c - one filter size [27 - 9216]
+                __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8));
+                __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8));
+                __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);  // xnor = not(xor(a,b))
+                __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1);  // can be optimized - we can do other NOT for wegihts once and do not do this NOT
+
+                count_sum = _mm256_add_epi64(count256(c_bit256), count_sum);    //  Mula�s algorithm
+
+                //count += popcnt256(c_bit256);
+
+                //binary_int64_printf(c_bit64);
+                //printf(", count = %d \n\n", tmp_count);
+            }
+
+            // count of 1 bits
+            //count = count_sum.m256i_i64[0] +
+            //    count_sum.m256i_i64[1] +
+            //    count_sum.m256i_i64[2] +
+             //   count_sum.m256i_i64[3];
+            count = _mm256_extract_epi64(count_sum, 0)
+                + _mm256_extract_epi64(count_sum, 1)
+                + _mm256_extract_epi64(count_sum, 2)
+                + _mm256_extract_epi64(count_sum, 3);
+
+            int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
+            count = count - f1;    // remove extra bits (from empty space for align only)
+
+            C[i*ldc + j] = (2 * count - K) * mean_val;
+        }
+    }
+}
+
+
+static inline float im2col_get_pixel(float *im, int height, int width, int channels,
+    int row, int col, int channel, int pad)
+{
+    row -= pad;
+    col -= pad;
+
+    if (row < 0 || col < 0 ||
+        row >= height || col >= width) return 0;
+    return im[col + width*(row + height*channel)];
+}
+
+//From Berkeley Vision's Caffe!
+//https://github.com/BVLC/caffe/blob/master/LICENSE
+void im2col_cpu_custom_transpose(float* data_im,
+    int channels, int height, int width,
+    int ksize, int stride, int pad, float* data_col, int ldb_align)
+{
+    int c, h, w;
+    int height_col = (height + 2 * pad - ksize) / stride + 1;
+    int width_col = (width + 2 * pad - ksize) / stride + 1;
+    int channels_col = channels * ksize * ksize;
+
+    // optimized version
+    if (height_col == height && width_col == width && stride == 1 && pad == 1)
+    {
+#pragma omp parallel for
+        for (c = 0; c < channels_col; ++c) {
+            int w_offset = c % ksize;
+            int h_offset = (c / ksize) % ksize;
+            int c_im = c / ksize / ksize;
+            for (h = pad; h < height_col - pad; ++h) {
+                for (w = pad; w < width_col - pad - 4; w+=8) {
+                    int im_row = h_offset + h - pad;
+                    int im_col = w_offset + w - pad;
+                    //int col_index = (c * height_col + h) * width_col + w;
+                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
+
+                    //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
+                    __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)]));
+                    data_col[col_index + ldb_align * 0] = _mm256_extract_float32(src256, 0);// src256.m256_f32[0];
+                    data_col[col_index + ldb_align * 1] = _mm256_extract_float32(src256, 1);// src256.m256_f32[1];
+                    data_col[col_index + ldb_align * 2] = _mm256_extract_float32(src256, 2);// src256.m256_f32[2];
+                    data_col[col_index + ldb_align * 3] = _mm256_extract_float32(src256, 3);// src256.m256_f32[3];
+                    data_col[col_index + ldb_align * 4] = _mm256_extract_float32(src256, 4);// src256.m256_f32[4];
+                    data_col[col_index + ldb_align * 5] = _mm256_extract_float32(src256, 5);// src256.m256_f32[5];
+                    data_col[col_index + ldb_align * 6] = _mm256_extract_float32(src256, 6);// src256.m256_f32[6];
+                    data_col[col_index + ldb_align * 7] = _mm256_extract_float32(src256, 7);// src256.m256_f32[7];
+
+                    //_mm256_storeu_ps(&data_col[col_index], src256);
+                }
+
+                for (; w < width_col - pad; ++w) {
+                    int im_row = h_offset + h - pad;
+                    int im_col = w_offset + w - pad;
+                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
+                    data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
+                }
+            }
+
+            {
+                w = 0;
+                for (h = 0; h < height_col; ++h) {
+                    int im_row = h_offset + h;
+                    int im_col = w_offset + w;
+                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
+                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
+                        im_row, im_col, c_im, pad);
+                }
+            }
+
+            {
+                w = width_col - 1;
+                for (h = 0; h < height_col; ++h) {
+                    int im_row = h_offset + h;
+                    int im_col = w_offset + w;
+                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
+                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
+                        im_row, im_col, c_im, pad);
+                }
+            }
+
+            {
+                h = 0;
+                for (w = 0; w < width_col; ++w) {
+                    int im_row = h_offset + h;
+                    int im_col = w_offset + w;
+                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
+                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
+                        im_row, im_col, c_im, pad);
+                }
+            }
+
+            {
+                h = height_col - 1;
+                for (w = 0; w < width_col; ++w) {
+                    int im_row = h_offset + h;
+                    int im_col = w_offset + w;
+                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
+                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
+                        im_row, im_col, c_im, pad);
+                }
+            }
+        }
+
+    }
+    else {
+        #pragma omp parallel for
+        for (c = 0; c < channels_col; ++c) {
+            int w_offset = c % ksize;
+            int h_offset = (c / ksize) % ksize;
+            int c_im = c / ksize / ksize;
+            for (h = 0; h < height_col; ++h) {
+                for (w = 0; w < width_col; ++w) {
+                    int im_row = h_offset + h * stride;
+                    int im_col = w_offset + w * stride;
+
+                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
+                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
+                        im_row, im_col, c_im, pad);
+                }
+            }
+        }
+    }
+}
+
+
+//From Berkeley Vision's Caffe!
+//https://github.com/BVLC/caffe/blob/master/LICENSE
+void im2col_cpu_custom(float* data_im,
+    int channels, int height, int width,
+    int ksize, int stride, int pad, float* data_col)
+{
+
+    int c, h, w;
+    int height_col = (height + 2 * pad - ksize) / stride + 1;
+    int width_col = (width + 2 * pad - ksize) / stride + 1;
+    int channels_col = channels * ksize * ksize;
+
+    // optimized version
+    if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx())
+    {
+        #pragma omp parallel for
+        for (c = 0; c < channels_col; ++c) {
+            int w_offset = c % ksize;
+            int h_offset = (c / ksize) % ksize;
+            int c_im = c / ksize / ksize;
+            for (h = pad; h < height_col-pad; ++h) {
+                for (w = pad; w < width_col-pad-8; w += 8) {
+                    int im_row = h_offset + h - pad;
+                    int im_col = w_offset + w - pad;
+                    int col_index = (c * height_col + h) * width_col + w;
+
+                    //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
+                    __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)]));
+                    _mm256_storeu_ps(&data_col[col_index], src256);
+                }
+
+                for (; w < width_col - pad; ++w) {
+                    int im_row = h_offset + h - pad;
+                    int im_col = w_offset + w - pad;
+                    int col_index = (c * height_col + h) * width_col + w;
+
+                    data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
+                }
+            }
+
+            {
+                w = 0;
+                for (h = 0; h < height_col; ++h) {
+                    int im_row = h_offset + h;
+                    int im_col = w_offset + w;
+                    int col_index = (c * height_col + h) * width_col + w;
+                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
+                        im_row, im_col, c_im, pad);
+                }
+            }
+
+            {
+                w = width_col-1;
+                for (h = 0; h < height_col; ++h) {
+                    int im_row = h_offset + h;
+                    int im_col = w_offset + w;
+                    int col_index = (c * height_col + h) * width_col + w;
+                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
+                        im_row, im_col, c_im, pad);
+                }
+            }
+
+            {
+                h = 0;
+                for (w = 0; w < width_col; ++w) {
+                    int im_row = h_offset + h;
+                    int im_col = w_offset + w;
+                    int col_index = (c * height_col + h) * width_col + w;
+                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
+                            im_row, im_col, c_im, pad);
+                }
+            }
+
+            {
+                h = height_col-1;
+                for (w = 0; w < width_col; ++w) {
+                    int im_row = h_offset + h;
+                    int im_col = w_offset + w;
+                    int col_index = (c * height_col + h) * width_col + w;
+                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
+                        im_row, im_col, c_im, pad);
+                }
+            }
+        }
+
+    }
+    else {
+        //printf("\n Error: is no non-optimized version \n");
+        im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col);
+    }
+}
+
+void transpose_8x8_bits(unsigned char A[8], unsigned char B[8], int m, int n)
+{
+    unsigned x, y, t;
+
+    // Load the array and pack it into x and y.
+
+    x = (A[0] << 24) | (A[m] << 16) | (A[2 * m] << 8) | A[3 * m];
+    y = (A[4 * m] << 24) | (A[5 * m] << 16) | (A[6 * m] << 8) | A[7 * m];
+
+    t = (x ^ (x >> 7)) & 0x00AA00AA; x = x ^ t ^ (t << 7);
+    t = (y ^ (y >> 7)) & 0x00AA00AA; y = y ^ t ^ (t << 7);
+
+    t = (x ^ (x >> 14)) & 0x0000CCCC; x = x ^ t ^ (t << 14);
+    t = (y ^ (y >> 14)) & 0x0000CCCC; y = y ^ t ^ (t << 14);
+
+    t = (x & 0xF0F0F0F0) | ((y >> 4) & 0x0F0F0F0F);
+    y = ((x << 4) & 0xF0F0F0F0) | (y & 0x0F0F0F0F);
+    x = t;
+
+    B[0] = x >> 24; B[n] = x >> 16; B[2 * n] = x >> 8; B[3 * n] = x;
+    B[4 * n] = y >> 24; B[5 * n] = y >> 16; B[6 * n] = y >> 8; B[7 * n] = y;
+}
+
+void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a)
+{
+    int i = 0;
+    if (a == LINEAR)
+    {}
+    else if (a == LEAKY)
+    {
+        if (is_fma_avx()) {
+            __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
+            __m256 all256_01 = _mm256_set1_ps(0.1F);
+
+            for (i = 0; i < n - 8; i += 8) {
+                //x[i] = (x[i]>0) ? x[i] : .1*x[i];
+
+                __m256 src256 = _mm256_loadu_ps(&x[i]);
+                __m256 mult256 = _mm256_mul_ps((src256), all256_01); // mult * 0.1
+
+                __m256i sign256 = _mm256_and_si256(_mm256_castps_si256(src256), all256_sing1); // check sign in 8 x 32-bit floats
+
+                __m256 result256 = _mm256_blendv_ps(src256, mult256, _mm256_castsi256_ps(sign256)); // (sign>0) ? src : mult;
+                _mm256_storeu_ps(&x[i], result256);
+            }
+        }
+
+        for (; i < n; ++i) {
+            x[i] = (x[i]>0) ? x[i] : .1*x[i];
+        }
+    }
+    else {
+        for (i = 0; i < n; ++i) {
+            x[i] = activate(x[i], a);
+        }
+    }
+}
+
+void float_to_bit(float *src, unsigned char *dst, size_t size)
+{
+    size_t dst_size = size / 8 + 1;
+    memset(dst, 0, dst_size);
+
+    size_t i;
+    __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
+
+    for (i = 0; i < size; i+=8)
+    {
+        __m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i]));
+        __m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats
+
+        uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1
+        mask = ~mask;   // inverse mask,  (val >= 0) ? 1 : 0
+
+        dst[i / 8] = mask;
+    }
+}
+
+static inline void transpose4x4_SSE(float *A, float *B, const int lda, const int ldb)
+{
+    __m128 row1 = _mm_loadu_ps(&A[0 * lda]);
+    __m128 row2 = _mm_loadu_ps(&A[1 * lda]);
+    __m128 row3 = _mm_loadu_ps(&A[2 * lda]);
+    __m128 row4 = _mm_loadu_ps(&A[3 * lda]);
+    _MM_TRANSPOSE4_PS(row1, row2, row3, row4);
+    _mm_storeu_ps(&B[0 * ldb], row1);
+    _mm_storeu_ps(&B[1 * ldb], row2);
+    _mm_storeu_ps(&B[2 * ldb], row3);
+    _mm_storeu_ps(&B[3 * ldb], row4);
+}
+
+void transpose_block_SSE4x4(float *A, float *B, const int n, const int m,
+    const int lda, const int ldb, const int block_size)
+{
+    int i;
+    #pragma omp parallel for
+    for (i = 0; i < n; i += block_size) {
+        int j, i2, j2;
+        //int max_i2 = (i + block_size < n) ? (i + block_size) : n;
+        if (i + block_size < n) {
+            int max_i2 = i + block_size;
+            for (j = 0; j < m; j += block_size) {
+                //int max_j2 = (j + block_size < m) ? (j + block_size) : m;
+                if (j + block_size < m) {
+                    int max_j2 = j + block_size;
+                    for (i2 = i; i2 < max_i2; i2 += 4) {
+                        for (j2 = j; j2 < max_j2; j2 += 4) {
+                            transpose4x4_SSE(&A[i2*lda + j2], &B[j2*ldb + i2], lda, ldb);
+                        }
+                    }
+                }
+                else {
+                    for (i2 = i; i2 < max_i2; ++i2) {
+                        for (j2 = j; j2 < m; ++j2) {
+                            B[j2*ldb + i2] = A[i2*lda + j2];
+                        }
+                    }
+                }
+            }
+        }
+        else {
+            for (i2 = i; i2 < n; ++i2) {
+                for (j2 = 0; j2 < m; ++j2) {
+                    B[j2*ldb + i2] = A[i2*lda + j2];
+                }
+            }
+        }
+    }
+}
+
+
 #else
 
 void gemm_nn(int M, int N, int K, float ALPHA,
-	float *A, int lda,
-	float *B, int ldb,
-	float *C, int ldc)
+    float *A, int lda,
+    float *B, int ldb,
+    float *C, int ldc)
 {
-	int i, j, k;
-	for (i = 0; i < M; ++i) {
-		for (k = 0; k < K; ++k) {
-			register float A_PART = ALPHA*A[i*lda + k];
-			for (j = 0; j < N; ++j) {
-				C[i*ldc + j] += A_PART*B[k*ldb + j];
-			}
-		}
-	}
+    int i, j, k;
+    for (i = 0; i < M; ++i) {
+        for (k = 0; k < K; ++k) {
+            register float A_PART = ALPHA*A[i*lda + k];
+            for (j = 0; j < N; ++j) {
+                C[i*ldc + j] += A_PART*B[k*ldb + j];
+            }
+        }
+    }
 }
-#endif	// __x86_64
 
-void gemm_nt(int M, int N, int K, float ALPHA, 
-        float *A, int lda, 
+
+void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride,
+    float *weights, float *input, float *output, float *mean)
+{
+    int out_h = (h + 2 * pad - ksize) / stride + 1;    // output_height=input_height for stride=1 and pad=1
+    int out_w = (w + 2 * pad - ksize) / stride + 1;    // output_width=input_width for stride=1 and pad=1
+    int i, f, j;
+
+    int fil;
+    // filter index
+#pragma omp parallel for      // "omp parallel for" - automatic parallelization of loop by using OpenMP
+    for (fil = 0; fil < n; ++fil) {
+        int chan, y, x, f_y, f_x;
+        // channel index
+        for (chan = 0; chan < c; ++chan)
+            // input - y
+            for (y = 0; y < h; ++y)
+                // input - x
+                for (x = 0; x < w; ++x)
+                {
+                    int const output_index = fil*w*h + y*w + x;
+                    int const weights_pre_index = fil*c*ksize*ksize + chan*ksize*ksize;
+                    int const input_pre_index = chan*w*h;
+                    float sum = 0;
+
+                    // filter - y
+                    for (f_y = 0; f_y < ksize; ++f_y)
+                    {
+                        int input_y = y + f_y - pad;
+                        // filter - x
+                        for (f_x = 0; f_x < ksize; ++f_x)
+                        {
+                            int input_x = x + f_x - pad;
+                            if (input_y < 0 || input_x < 0 || input_y >= h || input_x >= w) continue;
+
+                            int input_index = input_pre_index + input_y*w + input_x;
+                            int weights_index = weights_pre_index + f_y*ksize + f_x;
+
+                            sum += input[input_index] * weights[weights_index];
+                        }
+                    }
+                    // l.output[filters][width][height] +=
+                    //        state.input[channels][width][height] *
+                    //        l.weights[filters][channels][filter_width][filter_height];
+                    output[output_index] += sum;
+                }
+    }
+}
+
+void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
+    unsigned char *A, int lda,
+    unsigned char *B, int ldb,
+    float *C, int ldc, float *mean_arr)
+{
+    int i, j, k, h;
+
+#pragma omp parallel for
+    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
+        float mean_val = mean_arr[i];
+
+        for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
+            int count = 0;
+
+            for (k = 0; k < K; k += 64) {   // l.size*l.size*l.c - one filter size [27 - 9216]
+                uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8));
+                uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
+                uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
+
+#ifdef WIN32
+                int tmp_count = __popcnt64(c_bit64);
+#else
+                int tmp_count = __builtin_popcountll(c_bit64);
+#endif
+
+                if (K - k < 64)  tmp_count = tmp_count - (64 - (K - k));    // remove extra bits
+                count += tmp_count;
+                //binary_int64_printf(c_bit64);
+                //printf(", count = %d \n\n", tmp_count);
+            }
+
+            C[i*ldc + j] = (2 * count - K) * mean_val;
+        }
+    }
+}
+
+void im2col_cpu_custom_transpose(float* data_im,
+    int channels, int height, int width,
+    int ksize, int stride, int pad, float* data_col, int ldb_align)
+{
+    printf("\n im2col_cpu_custom_transpose() isn't implemented without AVX \n");
+}
+
+//From Berkeley Vision's Caffe!
+//https://github.com/BVLC/caffe/blob/master/LICENSE
+void im2col_cpu_custom(float* data_im,
+    int channels, int height, int width,
+    int ksize, int stride, int pad, float* data_col)
+{
+
+    int c, h, w;
+    int height_col = (height + 2 * pad - ksize) / stride + 1;
+    int width_col = (width + 2 * pad - ksize) / stride + 1;
+    int channels_col = channels * ksize * ksize;
+
+    // optimized version
+    if (height_col == height && width_col == width && stride == 1 && pad == 1)
+    {
+        #pragma omp parallel for
+        for (c = 0; c < channels_col; ++c) {
+            int w_offset = c % ksize;
+            int h_offset = (c / ksize) % ksize;
+            int c_im = c / ksize / ksize;
+            for (h = pad; h < height_col - pad; ++h) {
+                for (w = pad; w < width_col - pad; ++w) {
+                    int im_row = h_offset + h - pad;
+                    int im_col = w_offset + w - pad;
+                    int col_index = (c * height_col + h) * width_col + w;
+
+                    data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
+    }
+
+                for (; w < width_col - pad; ++w) {
+                    int im_row = h_offset + h - pad;
+                    int im_col = w_offset + w - pad;
+                    int col_index = (c * height_col + h) * width_col + w;
+
+                    data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
+                }
+}
+
+            {
+                w = 0;
+                for (h = 0; h < height_col; ++h) {
+                    int im_row = h_offset + h;
+                    int im_col = w_offset + w;
+                    int col_index = (c * height_col + h) * width_col + w;
+                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
+                        im_row, im_col, c_im, pad);
+                }
+            }
+
+            {
+                w = width_col - 1;
+                for (h = 0; h < height_col; ++h) {
+                    int im_row = h_offset + h;
+                    int im_col = w_offset + w;
+                    int col_index = (c * height_col + h) * width_col + w;
+                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
+                        im_row, im_col, c_im, pad);
+                }
+            }
+
+            {
+                h = 0;
+                for (w = 0; w < width_col; ++w) {
+                    int im_row = h_offset + h;
+                    int im_col = w_offset + w;
+                    int col_index = (c * height_col + h) * width_col + w;
+                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
+                        im_row, im_col, c_im, pad);
+                }
+            }
+
+            {
+                h = height_col - 1;
+                for (w = 0; w < width_col; ++w) {
+                    int im_row = h_offset + h;
+                    int im_col = w_offset + w;
+                    int col_index = (c * height_col + h) * width_col + w;
+                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
+                        im_row, im_col, c_im, pad);
+                }
+            }
+        }
+
+    }
+    else {
+        //printf("\n Error: is no non-optimized version \n");
+        im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col);
+    }
+}
+
+void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a)
+{
+    int i;
+    if (a == LINEAR)
+    {
+    }
+    else if (a == LEAKY)
+    {
+        for (i = 0; i < n; ++i) {
+            x[i] = (x[i]>0) ? x[i] : .1*x[i];
+        }
+    }
+    else {
+        for (i = 0; i < n; ++i) {
+            x[i] = activate(x[i], a);
+        }
+    }
+}
+
+void float_to_bit(float *src, unsigned char *dst, size_t size)
+{
+    size_t dst_size = size / 8 + 1;
+    memset(dst, 0, dst_size);
+
+    size_t i;
+    char *byte_arr = calloc(size, sizeof(char));
+    for (i = 0; i < size; ++i) {
+        if (src[i] > 0) byte_arr[i] = 1;
+    }
+
+    //for (i = 0; i < size; ++i) {
+    //    dst[i / 8] |= byte_arr[i] << (i % 8);
+    //}
+
+    for (i = 0; i < size; i += 8) {
+        char dst_tmp = 0;
+        dst_tmp |= byte_arr[i + 0] << 0;
+        dst_tmp |= byte_arr[i + 1] << 1;
+        dst_tmp |= byte_arr[i + 2] << 2;
+        dst_tmp |= byte_arr[i + 3] << 3;
+        dst_tmp |= byte_arr[i + 4] << 4;
+        dst_tmp |= byte_arr[i + 5] << 5;
+        dst_tmp |= byte_arr[i + 6] << 6;
+        dst_tmp |= byte_arr[i + 7] << 7;
+        dst[i / 8] = dst_tmp;
+    }
+    free(byte_arr);
+}
+
+static inline void transpose_scalar_block(float *A, float *B, const int lda, const int ldb, const int block_size)
+{
+    int i, j;
+    //#pragma omp parallel for
+    for (i = 0; i<block_size; i++) {
+        for (j = 0; j<block_size; j++) {
+            B[j*ldb + i] = A[i*lda + j];
+        }
+    }
+}
+
+void transpose_block_SSE4x4(float *A, float *B, const int n, const int m,
+    const int lda, const int ldb, const int block_size)
+{
+    int i;
+    #pragma omp parallel for
+    for (i = 0; i < n; i += block_size) {
+        int j, i2, j2;
+        for (j = 0; j < m; j += block_size) {
+            int max_i2 = i + block_size < n ? i + block_size : n;
+            int max_j2 = j + block_size < m ? j + block_size : m;
+            for (i2 = i; i2 < max_i2; ++i2) {
+                for (j2 = j; j2 < max_j2; ++j2) {
+                    B[j2*ldb + i2] = A[i2*lda + j2];
+                }
+                }
+            }
+        }
+}
+#endif    // __x86_64
+
+void gemm_nt(int M, int N, int K, float ALPHA,
+        float *A, int lda,
         float *B, int ldb,
         float *C, int ldc)
 {
@@ -230,8 +1385,8 @@
     }
 }
 
-void gemm_tn(int M, int N, int K, float ALPHA, 
-        float *A, int lda, 
+void gemm_tn(int M, int N, int K, float ALPHA,
+        float *A, int lda,
         float *B, int ldb,
         float *C, int ldc)
 {
@@ -246,8 +1401,8 @@
     }
 }
 
-void gemm_tt(int M, int N, int K, float ALPHA, 
-        float *A, int lda, 
+void gemm_tt(int M, int N, int K, float ALPHA,
+        float *A, int lda,
         float *B, int ldb,
         float *C, int ldc)
 {
@@ -264,53 +1419,55 @@
 }
 
 
-void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA, 
-        float *A, int lda, 
+void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,
+        float *A, int lda,
         float *B, int ldb,
         float BETA,
         float *C, int ldc)
 {
     //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc);
-    int i, j;
-    for(i = 0; i < M; ++i){
-        for(j = 0; j < N; ++j){
-            C[i*ldc + j] *= BETA;
+    if (BETA != 1){
+        int i, j;
+        for(i = 0; i < M; ++i){
+            for(j = 0; j < N; ++j){
+                C[i*ldc + j] *= BETA;
+            }
         }
     }
 
-	int t;
-	#pragma omp parallel for
-	for (t = 0; t < M; ++t) {
-		if (!TA && !TB)
-			gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
-		else if (TA && !TB)
-			gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
-		else if (!TA && TB)
-			gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
-		else
-			gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
-	}
+    int t;
+    #pragma omp parallel for
+    for (t = 0; t < M; ++t) {
+        if (!TA && !TB)
+            gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
+        else if (TA && !TB)
+            gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
+        else if (!TA && TB)
+            gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
+        else
+            gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
+    }
 }
 
 #ifdef GPU
 
 #include <math.h>
 
-void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, 
-        float *A_gpu, int lda, 
+void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
+        float *A_gpu, int lda,
         float *B_gpu, int ldb,
         float BETA,
         float *C_gpu, int ldc)
 {
     cublasHandle_t handle = blas_handle();
-	cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream());
-    cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N), 
+    cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream());
+    cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N),
             (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc);
     check_error(status);
 }
 
-void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, 
-        float *A, int lda, 
+void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
+        float *A, int lda,
         float *B, int ldb,
         float BETA,
         float *C, int ldc)
@@ -431,38 +1588,38 @@
 int test_gpu_blas()
 {
     /*
-       test_gpu_accuracy(0,0,10,576,75); 
+       test_gpu_accuracy(0,0,10,576,75);
 
-       test_gpu_accuracy(0,0,17,10,10); 
-       test_gpu_accuracy(1,0,17,10,10); 
-       test_gpu_accuracy(0,1,17,10,10); 
-       test_gpu_accuracy(1,1,17,10,10); 
+       test_gpu_accuracy(0,0,17,10,10);
+       test_gpu_accuracy(1,0,17,10,10);
+       test_gpu_accuracy(0,1,17,10,10);
+       test_gpu_accuracy(1,1,17,10,10);
 
-       test_gpu_accuracy(0,0,1000,10,100); 
-       test_gpu_accuracy(1,0,1000,10,100); 
-       test_gpu_accuracy(0,1,1000,10,100); 
-       test_gpu_accuracy(1,1,1000,10,100); 
+       test_gpu_accuracy(0,0,1000,10,100);
+       test_gpu_accuracy(1,0,1000,10,100);
+       test_gpu_accuracy(0,1,1000,10,100);
+       test_gpu_accuracy(1,1,1000,10,100);
 
-       test_gpu_accuracy(0,0,10,10,10); 
+       test_gpu_accuracy(0,0,10,10,10);
 
-       time_ongpu(0,0,64,2916,363); 
-       time_ongpu(0,0,64,2916,363); 
-       time_ongpu(0,0,64,2916,363); 
-       time_ongpu(0,0,192,729,1600); 
-       time_ongpu(0,0,384,196,1728); 
-       time_ongpu(0,0,256,196,3456); 
-       time_ongpu(0,0,256,196,2304); 
-       time_ongpu(0,0,128,4096,12544); 
-       time_ongpu(0,0,128,4096,4096); 
+       time_ongpu(0,0,64,2916,363);
+       time_ongpu(0,0,64,2916,363);
+       time_ongpu(0,0,64,2916,363);
+       time_ongpu(0,0,192,729,1600);
+       time_ongpu(0,0,384,196,1728);
+       time_ongpu(0,0,256,196,3456);
+       time_ongpu(0,0,256,196,2304);
+       time_ongpu(0,0,128,4096,12544);
+       time_ongpu(0,0,128,4096,4096);
      */
-    time_ongpu(0,0,64,75,12544); 
-    time_ongpu(0,0,64,75,12544); 
-    time_ongpu(0,0,64,75,12544); 
-    time_ongpu(0,0,64,576,12544); 
-    time_ongpu(0,0,256,2304,784); 
-    time_ongpu(1,1,2304,256,784); 
-    time_ongpu(0,0,512,4608,196); 
-    time_ongpu(1,1,4608,512,196); 
+    time_ongpu(0,0,64,75,12544);
+    time_ongpu(0,0,64,75,12544);
+    time_ongpu(0,0,64,75,12544);
+    time_ongpu(0,0,64,576,12544);
+    time_ongpu(0,0,256,2304,784);
+    time_ongpu(1,1,2304,256,784);
+    time_ongpu(0,0,512,4608,196);
+    time_ongpu(1,1,4608,512,196);
 
     return 0;
 }

--
Gitblit v1.10.0