From a723e1c62a27aeb39aaf7fcdeb3beb4e89fba32d Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Wed, 15 Aug 2018 20:52:09 +0000
Subject: [PATCH] Merge pull request #766 from HotChick91/AlexeyAB-mask

---
 src/network.h |  125 ++++++++++++++++++++++++++++++++++-------
 1 files changed, 102 insertions(+), 23 deletions(-)

diff --git a/src/network.h b/src/network.h
index 66873d2..3b07dbb 100644
--- a/src/network.h
+++ b/src/network.h
@@ -2,63 +2,121 @@
 #ifndef NETWORK_H
 #define NETWORK_H
 
+#include <stdint.h>
+#include "layer.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
 #include "image.h"
 #include "data.h"
+#include "tree.h"
 
 typedef enum {
-    CONVOLUTIONAL,
-    DECONVOLUTIONAL,
-    CONNECTED,
-    MAXPOOL,
-    SOFTMAX,
-    NORMALIZATION,
-    DROPOUT,
-    FREEWEIGHT,
-    CROP,
-    COST
-} LAYER_TYPE;
+    CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM
+} learning_rate_policy;
 
-typedef struct {
+typedef struct network{
+    float *workspace;
     int n;
     int batch;
-    int seen;
-    float learning_rate;
+	int *seen;
+    float epoch;
+    int subdivisions;
     float momentum;
     float decay;
-    void **layers;
-    LAYER_TYPE *types;
+    layer *layers;
     int outputs;
     float *output;
+    learning_rate_policy policy;
+
+    float learning_rate;
+    float gamma;
+    float scale;
+    float power;
+    int time_steps;
+    int step;
+    int max_batches;
+    float *scales;
+    int   *steps;
+    int num_steps;
+    int burn_in;
+
+    int adam;
+    float B1;
+    float B2;
+    float eps;
+
+    int inputs;
+    int h, w, c;
+    int max_crop;
+    int min_crop;
+    int flip; // horizontal flip 50% probability augmentaiont for classifier training (default = 1)
+    float angle;
+    float aspect;
+    float exposure;
+    float saturation;
+    float hue;
+	int small_object;
+
+    int gpu_index;
+    tree *hierarchy;
 
     #ifdef GPU
     float **input_gpu;
     float **truth_gpu;
+	float **input16_gpu;
+	float **output16_gpu;
+	size_t *max_input16_size;
+	size_t *max_output16_size;
+	int wait_stream;
     #endif
 } network;
 
+typedef struct network_state {
+    float *truth;
+    float *input;
+    float *delta;
+    float *workspace;
+    int train;
+    int index;
+    network net;
+} network_state;
+
 #ifdef GPU
+float train_networks(network *nets, int n, data d, int interval);
+void sync_nets(network *nets, int n, int interval);
 float train_network_datum_gpu(network net, float *x, float *y);
 float *network_predict_gpu(network net, float *input);
 float * get_network_output_gpu_layer(network net, int i);
 float * get_network_delta_gpu_layer(network net, int i);
+float *get_network_output_gpu(network net);
+void forward_network_gpu(network net, network_state state);
+void backward_network_gpu(network net, network_state state);
+void update_network_gpu(network net);
 #endif
 
+float get_current_rate(network net);
+int get_current_batch(network net);
+void free_network(network net);
 void compare_networks(network n1, network n2, data d);
 char *get_layer_string(LAYER_TYPE a);
 
-network make_network(int n, int batch);
-void forward_network(network net, float *input, float *truth, int train);
-void backward_network(network net, float *input);
+network make_network(int n);
+void forward_network(network net, network_state state);
+void backward_network(network net, network_state state);
 void update_network(network net);
 
 float train_network(network net, data d);
 float train_network_batch(network net, data d, int n);
 float train_network_sgd(network net, data d, int n);
+float train_network_datum(network net, float *x, float *y);
 
 matrix network_predict_data(network net, data test);
-float *network_predict(network net, float *input);
+YOLODLL_API float *network_predict(network net, float *input);
 float network_accuracy(network net, data d);
-float *network_accuracies(network net, data d);
+float *network_accuracies(network net, data d, int n);
 float network_accuracy_multi(network net, data d, int n);
 void top_predictions(network net, int n, int *index);
 float *get_network_output(network net);
@@ -72,11 +130,32 @@
 int get_predicted_class_network(network net);
 void print_network(network net);
 void visualize_network(network net);
-int resize_network(network net, int h, int w, int c);
+int resize_network(network *net, int w, int h);
 void set_batch_network(network *net, int b);
-void set_learning_network(network *net, float rate, float momentum, float decay);
 int get_network_input_size(network net);
 float get_network_cost(network net);
+YOLODLL_API layer* get_network_layer(network* net, int i);
+YOLODLL_API detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter);
+YOLODLL_API detection *make_network_boxes(network *net, float thresh, int *num);
+YOLODLL_API void free_detections(detection *dets, int n);
+YOLODLL_API void reset_rnn(network *net);
+YOLODLL_API network *load_network_custom(char *cfg, char *weights, int clear, int batch);
+YOLODLL_API network *load_network(char *cfg, char *weights, int clear);
+YOLODLL_API float *network_predict_image(network *net, image im);
+YOLODLL_API void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show);
+YOLODLL_API int network_width(network *net);
+YOLODLL_API int network_height(network *net);
+
+YOLODLL_API void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm);
+
+int get_network_nuisance(network net);
+int get_network_background(network net);
+YOLODLL_API void fuse_conv_batchnorm(network net);
+YOLODLL_API void calculate_binary_weights(network net);
+
+#ifdef __cplusplus
+}
+#endif
 
 #endif
 

--
Gitblit v1.10.0