From a723e1c62a27aeb39aaf7fcdeb3beb4e89fba32d Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Wed, 15 Aug 2018 20:52:09 +0000
Subject: [PATCH] Merge pull request #766 from HotChick91/AlexeyAB-mask

---
 src/softmax_layer.c |  150 +++++++++++++++++++++----------------------------
 1 files changed, 65 insertions(+), 85 deletions(-)

diff --git a/src/softmax_layer.c b/src/softmax_layer.c
index abd9abf..27f73fd 100644
--- a/src/softmax_layer.c
+++ b/src/softmax_layer.c
@@ -1,51 +1,70 @@
 #include "softmax_layer.h"
-#include "mini_blas.h"
+#include "blas.h"
+#include "cuda.h"
 #include <float.h>
 #include <math.h>
 #include <stdlib.h>
 #include <stdio.h>
+#include <assert.h>
 
-softmax_layer *make_softmax_layer(int batch, int inputs)
+softmax_layer make_softmax_layer(int batch, int inputs, int groups)
 {
-    fprintf(stderr, "Softmax Layer: %d inputs\n", inputs);
-    softmax_layer *layer = calloc(1, sizeof(softmax_layer));
-    layer->batch = batch;
-    layer->inputs = inputs;
-    layer->output = calloc(inputs*batch, sizeof(float));
-    layer->delta = calloc(inputs*batch, sizeof(float));
-    layer->jacobian = calloc(inputs*inputs*batch, sizeof(float));
+    assert(inputs%groups == 0);
+    fprintf(stderr, "softmax                                        %4d\n",  inputs);
+    softmax_layer l = {0};
+    l.type = SOFTMAX;
+    l.batch = batch;
+    l.groups = groups;
+    l.inputs = inputs;
+    l.outputs = inputs;
+    l.output = calloc(inputs*batch, sizeof(float));
+    l.delta = calloc(inputs*batch, sizeof(float));
+
+    l.forward = forward_softmax_layer;
+    l.backward = backward_softmax_layer;
     #ifdef GPU
-    layer->output_cl = cl_make_array(layer->output, inputs*batch); 
-    layer->delta_cl = cl_make_array(layer->delta, inputs*batch); 
+    l.forward_gpu = forward_softmax_layer_gpu;
+    l.backward_gpu = backward_softmax_layer_gpu;
+
+    l.output_gpu = cuda_make_array(l.output, inputs*batch); 
+    l.delta_gpu = cuda_make_array(l.delta, inputs*batch); 
     #endif
-    return layer;
+    return l;
 }
 
-void forward_softmax_layer(const softmax_layer layer, float *input)
+void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output)
 {
-    int i,b;
-    for(b = 0; b < layer.batch; ++b){
-        float sum = 0;
-        float largest = -FLT_MAX;
-        for(i = 0; i < layer.inputs; ++i){
-            if(input[i+b*layer.inputs] > largest) largest = input[i+b*layer.inputs];
-        }
-        for(i = 0; i < layer.inputs; ++i){
-            sum += exp(input[i+b*layer.inputs]-largest);
-        }
-        if(sum) sum = largest+log(sum);
-        else sum = largest-100;
-        for(i = 0; i < layer.inputs; ++i){
-            layer.output[i+b*layer.inputs] = exp(input[i+b*layer.inputs]-sum);
+    int b;
+    for(b = 0; b < batch; ++b){
+        int i;
+        int count = 0;
+        for(i = 0; i < hierarchy->groups; ++i){
+            int group_size = hierarchy->group_size[i];
+            softmax(input+b*inputs + count, group_size, temp, output+b*inputs + count, 1);
+            count += group_size;
         }
     }
 }
 
-void backward_softmax_layer(const softmax_layer layer, float *delta)
+void forward_softmax_layer(const softmax_layer l, network_state state)
+{
+    int b;
+    int inputs = l.inputs / l.groups;
+    int batch = l.batch * l.groups;
+    if(l.softmax_tree){
+        softmax_tree(state.input, batch, inputs, l.temperature, l.softmax_tree, l.output);
+    } else {
+        for(b = 0; b < batch; ++b){
+            softmax(state.input+b*inputs, inputs, l.temperature, l.output+b*inputs, 1);
+        }
+    }
+}
+
+void backward_softmax_layer(const softmax_layer l, network_state state)
 {
     int i;
-    for(i = 0; i < layer.inputs*layer.batch; ++i){
-        delta[i] = layer.delta[i];
+    for(i = 0; i < l.inputs*l.batch; ++i){
+        state.delta[i] += l.delta[i];
     }
 }
 
@@ -53,68 +72,29 @@
 
 void pull_softmax_layer_output(const softmax_layer layer)
 {
-    cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
+    cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch);
 }
 
-cl_kernel get_softmax_forward_kernel()
+void forward_softmax_layer_gpu(const softmax_layer l, network_state state)
 {
-    static int init = 0;
-    static cl_kernel kernel;
-    if(!init){
-        kernel = get_kernel("src/softmax_layer.cl", "forward", 0);
-        init = 1;
+    int inputs = l.inputs / l.groups;
+    int batch = l.batch * l.groups;
+    if(l.softmax_tree){
+        int i;
+        int count = 0;
+        for (i = 0; i < l.softmax_tree->groups; ++i) {
+            int group_size = l.softmax_tree->group_size[i];
+            softmax_gpu(state.input+count, group_size, inputs, batch, l.temperature, l.output_gpu + count);
+            count += group_size;
+        }
+    } else {
+        softmax_gpu(state.input, inputs, inputs, batch, l.temperature, l.output_gpu);
     }
-    return kernel;
 }
 
-void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input)
+void backward_softmax_layer_gpu(const softmax_layer layer, network_state state)
 {
-    cl_setup();
-    cl_kernel kernel = get_softmax_forward_kernel();
-    cl_command_queue queue = cl.queue;
-
-    cl_uint i = 0;
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.inputs), (void*) &layer.inputs);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
-    check_error(cl);
-
-    const size_t global_size[] = {layer.batch};
-
-    cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
-    check_error(cl);
-
-    /*
-    cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
-    int z;
-    for(z = 0; z < layer.inputs*layer.batch; ++z) printf("%f,",layer.output[z]);
-    */
+    axpy_ongpu(layer.batch*layer.inputs, 1, layer.delta_gpu, 1, state.delta, 1);
 }
 
-void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta)
-{
-    copy_ongpu(layer.batch*layer.inputs, layer.delta_cl, 1, delta, 1);
-}
 #endif
-
-/* This is if you want softmax w/o log-loss classification. You probably don't.
-   int i,j,b;
-   for(b = 0; b < layer.batch; ++b){
-   for(i = 0; i < layer.inputs; ++i){
-   for(j = 0; j < layer.inputs; ++j){
-   int d = (i==j);
-   layer.jacobian[b*layer.inputs*layer.inputs + i*layer.inputs + j] = 
-   layer.output[b*layer.inputs + i] * (d - layer.output[b*layer.inputs + j]);
-   }
-   }
-   }
-   for(b = 0; b < layer.batch; ++b){
-   int M = layer.inputs;
-   int N = 1;
-   int K = layer.inputs;
-   float *A = layer.jacobian + b*layer.inputs*layer.inputs;
-   float *B = layer.delta + b*layer.inputs;
-   float *C = delta + b*layer.inputs;
-   gemm(0,0,M,N,K,1,A,K,B,N,0,C,N);
-   }
- */

--
Gitblit v1.10.0