From a7af0709cc4e032d4e0fee5a3fc4d6a6865d62a6 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Tue, 13 Dec 2016 12:55:55 +0000
Subject: [PATCH] Added: train_voc.cmd

---
 README.md |   30 ++++++++++++++++--------------
 1 files changed, 16 insertions(+), 14 deletions(-)

diff --git a/README.md b/README.md
index 56fe716..379d8fa 100644
--- a/README.md
+++ b/README.md
@@ -16,14 +16,18 @@
 * **OpenCV 2.4.9**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.9/opencv-2.4.9.exe/download
   - To compile without OpenCV - remove define OPENCV from: Visual Studio->Project->Properties->C/C++->Preprocessor
   - To compile with different OpenCV version - change in file yolo.c each string look like **#pragma comment(lib, "opencv_core249.lib")** from 249 to required version.
-  - With OpenCV will show image or video detection in window
+  - With OpenCV will show image or video detection in window and store result to: test_dnn_out.avi
 
 ##### Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality):
-* `yolo.cfg` (256 MB) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
-* `yolo-tiny.cfg` (60 MB) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo-voc.weights
+* `yolo.cfg` (256 MB COCO-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo.weights
+* `yolo-voc.cfg` (256 MB VOC-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
+* `tiny-yolo.cfg` (60 MB COCO-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo.weights
+* `tiny-yolo-voc.cfg` (60 MB VOC-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo-voc.weights
 
 Put it near compiled: darknet.exe
 
+You can get cfg-files by path: `darknet/cfg/`
+
 ##### Examples of results:
 
 [![Everything Is AWESOME](http://img.youtube.com/vi/VOC3huqHrss/0.jpg)](https://www.youtube.com/watch?v=VOC3huqHrss "Everything Is AWESOME")
@@ -35,11 +39,13 @@
 ##### Example of usage in cmd-files from `build\darknet\x64\`:
 
 * `darknet_voc.cmd` - initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image file
-* `darknet_demo_voc.cmd` - initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4
-* `darknet_net_cam_voc.cmd` - initialization with 256 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone)
+* `darknet_demo_voc.cmd` - initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4, and store result to: test_dnn_out.avi
+* `darknet_net_cam_voc.cmd` - initialization with 256 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone) and store result to: test_dnn_out.avi
+* `darknet_web_cam_voc.cmd` - initialization with 256 MB VOC-model, play video from Web-Camera number #0 and store result to: test_dnn_out.avi
 
 ##### How to use on the command line:
 * 256 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2`
+* Alternative method 256 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2`
 * 256 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0`
 * 256 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0`
 * 256 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
@@ -47,6 +53,7 @@
 * 60 MB VOC-model for video: `darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0`
 * 256 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
 * 256 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 256 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0`
 
 ##### For using network video-camera mjpeg-stream with any Android smartphone:
 
@@ -60,14 +67,9 @@
 3. Start Smart WebCam on your phone
 4. Replace the address below, on shown in the phone application (Smart WebCam) and launch:
 
-```
-darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0
-```
 
-##### How to use COCO instead of VOC:
-
-* Get synset names from `build\darknet\x64\data\coco.names`: https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/data/coco.names
-* And change list `char *voc_names[] = ` to COCO-names in file `yolo.c`: https://github.com/AlexeyAB/darknet/blob/master/src/yolo.c#L30
+* 256 MB COCO-model: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 256 MB VOC-model: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
 
 
 ### How to compile:
@@ -93,7 +95,7 @@
 
 `C:\opencv_2.4.9\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include`
 - right click on project -> Build dependecies -> Build Customizations -> set check on CUDA 8.0 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
-- add to project all .c & .cu files from yolo-windows\src
+- add to project all .c & .cu files from `\src`
 -  (right click on project) -> properties  -> Linker -> General -> Additional Library Directories, put here: 
 
 `C:\opencv_2.4.9\opencv\build\x64\vc12\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)`
@@ -105,7 +107,7 @@
 `OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
 - compile to .exe (X64 & Release) and put .dll`s near with .exe:
 
-`pthreadVC2.dll, pthreadGC2.dll` from yolo-windows\3rdparty\dll\x64
+`pthreadVC2.dll, pthreadGC2.dll` from \3rdparty\dll\x64
 
 `cusolver64_80.dll, curand64_80.dll, cudart64_80.dll, cublas64_80.dll` - 80 for CUDA 8.0 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
 

--
Gitblit v1.10.0