From a7ddb205067bd0b1e83e4f5ce6f40bfd1d18afae Mon Sep 17 00:00:00 2001 From: Alexey <AlexeyAB@users.noreply.github.com> Date: Mon, 04 Jun 2018 11:23:13 +0000 Subject: [PATCH] Update Readme.md --- README.md | 8 ++++++++ 1 files changed, 8 insertions(+), 0 deletions(-) diff --git a/README.md b/README.md index e56efa8..8e93f9b 100644 --- a/README.md +++ b/README.md @@ -421,6 +421,14 @@ * for training with a large number of objects in each image, add the parameter `max=200` or higher value in the last layer [region] in your cfg-file + * for training for small objects - set `layers = -1, 11` instead of https://github.com/AlexeyAB/darknet/blob/6390a5a2ab61a0bdf6f1a9a6b4a739c16b36e0d7/cfg/yolov3.cfg#L720 + and set `stride=4` instead of https://github.com/AlexeyAB/darknet/blob/6390a5a2ab61a0bdf6f1a9a6b4a739c16b36e0d7/cfg/yolov3.cfg#L717 + + * General rule - you should keep relative size of objects in the Training and Testing datasets the same: + + * `train_network_width * train_obj_width / train_image_width ~= detection_network_width * detection_obj_width / detection_image_width` + * `train_network_height * train_obj_height / train_image_height ~= detection_network_height * detection_obj_height / detection_image_height` + * to speedup training (with decreasing detection accuracy) do Fine-Tuning instead of Transfer-Learning, set param `stopbackward=1` in one of the penultimate convolutional layers before the 1-st `[yolo]`-layer, for example here: https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L598 2. After training - for detection: -- Gitblit v1.10.0