From a9c0a8b2b516ca20abc1fbe7158b97a34f92b23f Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Mon, 02 Jan 2017 12:24:11 +0000
Subject: [PATCH] Minor fix for pragma-lib

---
 src/rnn.c |  398 +++++++++++++++++++++++++++++++++++++++++++++++++-------
 1 files changed, 348 insertions(+), 50 deletions(-)

diff --git a/src/rnn.c b/src/rnn.c
index 43cac5a..eca6f55 100644
--- a/src/rnn.c
+++ b/src/rnn.c
@@ -1,6 +1,7 @@
 #include "network.h"
 #include "cost_layer.h"
 #include "utils.h"
+#include "blas.h"
 #include "parser.h"
 
 #ifdef OPENCV
@@ -12,29 +13,66 @@
     float *y;
 } float_pair;
 
-float_pair get_rnn_data(unsigned char *text, int characters, int len, int batch, int steps)
+int *read_tokenized_data(char *filename, size_t *read)
+{
+    size_t size = 512;
+    size_t count = 0;
+    FILE *fp = fopen(filename, "r");
+    int *d = calloc(size, sizeof(int));
+    int n, one;
+    one = fscanf(fp, "%d", &n);
+    while(one == 1){
+        ++count;
+        if(count > size){
+            size = size*2;
+            d = realloc(d, size*sizeof(int));
+        }
+        d[count-1] = n;
+        one = fscanf(fp, "%d", &n);
+    }
+    fclose(fp);
+    d = realloc(d, count*sizeof(int));
+    *read = count;
+    return d;
+}
+
+char **read_tokens(char *filename, size_t *read)
+{
+    size_t size = 512;
+    size_t count = 0;
+    FILE *fp = fopen(filename, "r");
+    char **d = calloc(size, sizeof(char *));
+    char *line;
+    while((line=fgetl(fp)) != 0){
+        ++count;
+        if(count > size){
+            size = size*2;
+            d = realloc(d, size*sizeof(char *));
+        }
+        d[count-1] = line;
+    }
+    fclose(fp);
+    d = realloc(d, count*sizeof(char *));
+    *read = count;
+    return d;
+}
+
+float_pair get_rnn_token_data(int *tokens, size_t *offsets, int characters, size_t len, int batch, int steps)
 {
     float *x = calloc(batch * steps * characters, sizeof(float));
     float *y = calloc(batch * steps * characters, sizeof(float));
     int i,j;
     for(i = 0; i < batch; ++i){
-        int index = rand() %(len - steps - 1);
-        /*
-        int done = 1;
-        while(!done){
-            index = rand() %(len - steps - 1);
-            while(index < len-steps-1 && text[index++] != '\n');
-            if (index < len-steps-1) done = 1;
-            }
-         */
         for(j = 0; j < steps; ++j){
-            x[(j*batch + i)*characters + text[index + j]] = 1;
-            y[(j*batch + i)*characters + text[index + j + 1]] = 1;
+            int curr = tokens[(offsets[i])%len];
+            int next = tokens[(offsets[i] + 1)%len];
 
-            if(text[index+j] > 255 || text[index+j] <= 0 || text[index+j+1] > 255 || text[index+j+1] <= 0){
-                text[index+j+2] = 0;
-                printf("%d %d %d %d %d\n", index, j, len, (int)text[index+j], (int)text[index+j+1]);
-                printf("%s", text+index);
+            x[(j*batch + i)*characters + curr] = 1;
+            y[(j*batch + i)*characters + next] = 1;
+
+            offsets[i] = (offsets[i] + 1) % len;
+
+            if(curr >= characters || curr < 0 || next >= characters || next < 0){
                 error("Bad char");
             }
         }
@@ -45,21 +83,70 @@
     return p;
 }
 
-void train_char_rnn(char *cfgfile, char *weightfile, char *filename)
+float_pair get_rnn_data(unsigned char *text, size_t *offsets, int characters, size_t len, int batch, int steps)
 {
-    FILE *fp = fopen(filename, "rb");
+    float *x = calloc(batch * steps * characters, sizeof(float));
+    float *y = calloc(batch * steps * characters, sizeof(float));
+    int i,j;
+    for(i = 0; i < batch; ++i){
+        for(j = 0; j < steps; ++j){
+            unsigned char curr = text[(offsets[i])%len];
+            unsigned char next = text[(offsets[i] + 1)%len];
 
-    fseek(fp, 0, SEEK_END); 
-    size_t size = ftell(fp);
-    fseek(fp, 0, SEEK_SET); 
+            x[(j*batch + i)*characters + curr] = 1;
+            y[(j*batch + i)*characters + next] = 1;
 
-    unsigned char *text = calloc(size+1, sizeof(char));
-    fread(text, 1, size, fp);
-    fclose(fp);
+            offsets[i] = (offsets[i] + 1) % len;
+
+            if(curr > 255 || curr <= 0 || next > 255 || next <= 0){
+                /*text[(index+j+2)%len] = 0;
+                printf("%ld %d %d %d %d\n", index, j, len, (int)text[index+j], (int)text[index+j+1]);
+                printf("%s", text+index);
+                */
+                error("Bad char");
+            }
+        }
+    }
+    float_pair p;
+    p.x = x;
+    p.y = y;
+    return p;
+}
+
+void reset_rnn_state(network net, int b)
+{
+    int i;
+    for (i = 0; i < net.n; ++i) {
+        #ifdef GPU
+        layer l = net.layers[i];
+        if(l.state_gpu){
+            fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
+        }
+        #endif
+    }
+}
+
+void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear, int tokenized)
+{
+    srand(time(0));
+    unsigned char *text = 0;
+    int *tokens = 0;
+    size_t size;
+    if(tokenized){
+        tokens = read_tokenized_data(filename, &size);
+    } else {
+        FILE *fp = fopen(filename, "rb");
+
+        fseek(fp, 0, SEEK_END); 
+        size = ftell(fp);
+        fseek(fp, 0, SEEK_SET); 
+
+        text = calloc(size+1, sizeof(char));
+        fread(text, 1, size, fp);
+        fclose(fp);
+    }
 
     char *backup_directory = "/home/pjreddie/backup/";
-    srand(time(0));
-    data_seed = time(0);
     char *base = basecfg(cfgfile);
     fprintf(stderr, "%s\n", base);
     float avg_loss = -1;
@@ -67,17 +154,31 @@
     if(weightfile){
         load_weights(&net, weightfile);
     }
+
     int inputs = get_network_input_size(net);
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int batch = net.batch;
     int steps = net.time_steps;
+    if(clear) *net.seen = 0;
     int i = (*net.seen)/net.batch;
 
+    int streams = batch/steps;
+    size_t *offsets = calloc(streams, sizeof(size_t));
+    int j;
+    for(j = 0; j < streams; ++j){
+        offsets[j] = rand_size_t()%size;
+    }
+
     clock_t time;
     while(get_current_batch(net) < net.max_batches){
         i += 1;
         time=clock();
-        float_pair p = get_rnn_data(text, inputs, size, batch/steps, steps);
+        float_pair p;
+        if(tokenized){
+            p = get_rnn_token_data(tokens, offsets, inputs, size, streams, steps);
+        }else{
+            p = get_rnn_data(text, offsets, inputs, size, streams, steps);
+        }
 
         float loss = train_network_datum(net, p.x, p.y) / (batch);
         free(p.x);
@@ -85,8 +186,19 @@
         if (avg_loss < 0) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
 
-        fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time));
-        if(i%100==0){
+        int chars = get_current_batch(net)*batch;
+        fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds, %f epochs\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), (float) chars/size);
+
+        for(j = 0; j < streams; ++j){
+            //printf("%d\n", j);
+            if(rand()%10 == 0){
+                //fprintf(stderr, "Reset\n");
+                offsets[j] = rand_size_t()%size;
+                reset_rnn_state(net, j);
+            }
+        }
+
+        if(i%1000==0){
             char buff[256];
             sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
             save_weights(net, buff);
@@ -102,8 +214,22 @@
     save_weights(net, buff);
 }
 
-void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed)
+void print_symbol(int n, char **tokens){
+    if(tokens){
+        printf("%s ", tokens[n]);
+    } else {
+        printf("%c", n);
+    }
+}
+
+void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed, char *token_file)
 {
+    char **tokens = 0;
+    if(token_file){
+        size_t n;
+        tokens = read_tokens(token_file, &n);
+    }
+
     srand(rseed);
     char *base = basecfg(cfgfile);
     fprintf(stderr, "%s\n", base);
@@ -116,34 +242,89 @@
 
     int i, j;
     for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
-    unsigned char c;
+    int c = 0;
     int len = strlen(seed);
     float *input = calloc(inputs, sizeof(float));
+
+    /*
+       fill_cpu(inputs, 0, input, 1);
+       for(i = 0; i < 10; ++i){
+       network_predict(net, input);
+       }
+       fill_cpu(inputs, 0, input, 1);
+     */
+
     for(i = 0; i < len-1; ++i){
         c = seed[i];
-        input[(int)c] = 1;
+        input[c] = 1;
         network_predict(net, input);
-        input[(int)c] = 0;
-        printf("%c", c);
+        input[c] = 0;
+        print_symbol(c, tokens);
     }
-    c = seed[len-1];
+    if(len) c = seed[len-1];
+    print_symbol(c, tokens);
     for(i = 0; i < num; ++i){
-        printf("%c", c);
-        float r = rand_uniform(0,1);
-        float sum = 0;
-        input[(int)c] = 1;
+        input[c] = 1;
         float *out = network_predict(net, input);
-        input[(int)c] = 0;
-        for(j = 0; j < inputs; ++j){
-            sum += out[j];
-            if(sum > r) break;
+        input[c] = 0;
+        for(j = 32; j < 127; ++j){
+            //printf("%d %c %f\n",j, j, out[j]);
         }
-        c = j;
+        for(j = 0; j < inputs; ++j){
+            if (out[j] < .0001) out[j] = 0;
+        }
+        c = sample_array(out, inputs);
+        print_symbol(c, tokens);
     }
     printf("\n");
 }
 
-void valid_char_rnn(char *cfgfile, char *weightfile)
+void test_tactic_rnn(char *cfgfile, char *weightfile, int num, float temp, int rseed, char *token_file)
+{
+    char **tokens = 0;
+    if(token_file){
+        size_t n;
+        tokens = read_tokens(token_file, &n);
+    }
+
+    srand(rseed);
+    char *base = basecfg(cfgfile);
+    fprintf(stderr, "%s\n", base);
+
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int inputs = get_network_input_size(net);
+
+    int i, j;
+    for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
+    int c = 0;
+    float *input = calloc(inputs, sizeof(float));
+    float *out = 0;
+
+    while((c = getc(stdin)) != EOF){
+        input[c] = 1;
+        out = network_predict(net, input);
+        input[c] = 0;
+    }
+    for(i = 0; i < num; ++i){
+        for(j = 0; j < inputs; ++j){
+            if (out[j] < .0001) out[j] = 0;
+        }
+        int next = sample_array(out, inputs);
+        if(c == '.' && next == '\n') break;
+        c = next;
+        print_symbol(c, tokens);
+
+        input[c] = 1;
+        out = network_predict(net, input);
+        input[c] = 0;
+    }
+    printf("\n");
+}
+
+void valid_tactic_rnn(char *cfgfile, char *weightfile, char *seed)
 {
     char *base = basecfg(cfgfile);
     fprintf(stderr, "%s\n", base);
@@ -155,24 +336,135 @@
     int inputs = get_network_input_size(net);
 
     int count = 0;
+    int words = 1;
     int c;
+    int len = strlen(seed);
     float *input = calloc(inputs, sizeof(float));
+    int i;
+    for(i = 0; i < len; ++i){
+        c = seed[i];
+        input[(int)c] = 1;
+        network_predict(net, input);
+        input[(int)c] = 0;
+    }
+    float sum = 0;
+    c = getc(stdin);
+    float log2 = log(2);
+    int in = 0;
+    while(c != EOF){
+        int next = getc(stdin);
+        if(next == EOF) break;
+        if(next < 0 || next >= 255) error("Out of range character");
+
+        input[c] = 1;
+        float *out = network_predict(net, input);
+        input[c] = 0;
+
+        if(c == '.' && next == '\n') in = 0;
+        if(!in) {
+            if(c == '>' && next == '>'){
+                in = 1;
+                ++words;
+            }
+            c = next;
+            continue;
+        }
+        ++count;
+        sum += log(out[next])/log2;
+        c = next;
+        printf("%d %d Perplexity: %4.4f    Word Perplexity: %4.4f\n", count, words, pow(2, -sum/count), pow(2, -sum/words));
+    }
+}
+
+void valid_char_rnn(char *cfgfile, char *weightfile, char *seed)
+{
+    char *base = basecfg(cfgfile);
+    fprintf(stderr, "%s\n", base);
+
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int inputs = get_network_input_size(net);
+
+    int count = 0;
+    int words = 1;
+    int c;
+    int len = strlen(seed);
+    float *input = calloc(inputs, sizeof(float));
+    int i;
+    for(i = 0; i < len; ++i){
+        c = seed[i];
+        input[(int)c] = 1;
+        network_predict(net, input);
+        input[(int)c] = 0;
+    }
     float sum = 0;
     c = getc(stdin);
     float log2 = log(2);
     while(c != EOF){
         int next = getc(stdin);
         if(next == EOF) break;
+        if(next < 0 || next >= 255) error("Out of range character");
         ++count;
+        if(next == ' ' || next == '\n' || next == '\t') ++words;
         input[c] = 1;
         float *out = network_predict(net, input);
         input[c] = 0;
         sum += log(out[next])/log2;
         c = next;
+        printf("%d Perplexity: %4.4f    Word Perplexity: %4.4f\n", count, pow(2, -sum/count), pow(2, -sum/words));
     }
-    printf("Perplexity: %f\n", pow(2, -sum/count));
 }
 
+void vec_char_rnn(char *cfgfile, char *weightfile, char *seed)
+{
+    char *base = basecfg(cfgfile);
+    fprintf(stderr, "%s\n", base);
+
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int inputs = get_network_input_size(net);
+
+    int c;
+    int seed_len = strlen(seed);
+    float *input = calloc(inputs, sizeof(float));
+    int i;
+    char *line;
+    while((line=fgetl(stdin)) != 0){
+        reset_rnn_state(net, 0);
+        for(i = 0; i < seed_len; ++i){
+            c = seed[i];
+            input[(int)c] = 1;
+            network_predict(net, input);
+            input[(int)c] = 0;
+        }
+        strip(line);
+        int str_len = strlen(line);
+        for(i = 0; i < str_len; ++i){
+            c = line[i];
+            input[(int)c] = 1;
+            network_predict(net, input);
+            input[(int)c] = 0;
+        }
+        c = ' ';
+        input[(int)c] = 1;
+        network_predict(net, input);
+        input[(int)c] = 0;
+
+        layer l = net.layers[0];
+        #ifdef GPU
+        cuda_pull_array(l.output_gpu, l.output, l.outputs);
+        #endif
+        printf("%s", line);
+        for(i = 0; i < l.outputs; ++i){
+            printf(",%g", l.output[i]);
+        }
+        printf("\n");
+    }
+}
 
 void run_char_rnn(int argc, char **argv)
 {
@@ -181,14 +473,20 @@
         return;
     }
     char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt");
-    char *seed = find_char_arg(argc, argv, "-seed", "\n");
+    char *seed = find_char_arg(argc, argv, "-seed", "\n\n");
     int len = find_int_arg(argc, argv, "-len", 1000);
     float temp = find_float_arg(argc, argv, "-temp", .7);
     int rseed = find_int_arg(argc, argv, "-srand", time(0));
+    int clear = find_arg(argc, argv, "-clear");
+    int tokenized = find_arg(argc, argv, "-tokenized");
+    char *tokens = find_char_arg(argc, argv, "-tokens", 0);
 
     char *cfg = argv[3];
     char *weights = (argc > 4) ? argv[4] : 0;
-    if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename);
-    else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights);
-    else if(0==strcmp(argv[2], "test")) test_char_rnn(cfg, weights, len, seed, temp, rseed);
+    if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear, tokenized);
+    else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, seed);
+    else if(0==strcmp(argv[2], "validtactic")) valid_tactic_rnn(cfg, weights, seed);
+    else if(0==strcmp(argv[2], "vec")) vec_char_rnn(cfg, weights, seed);
+    else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed, tokens);
+    else if(0==strcmp(argv[2], "generatetactic")) test_tactic_rnn(cfg, weights, len, temp, rseed, tokens);
 }

--
Gitblit v1.10.0