From a9e16d914a5e1247c4149d95afbe8f68ca846a53 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 23 Sep 2015 00:34:48 +0000
Subject: [PATCH] more writing stuff

---
 src/coco.c |  372 ++++++++++++++++++++++++++++++++++++++++++----------
 1 files changed, 300 insertions(+), 72 deletions(-)

diff --git a/src/coco.c b/src/coco.c
index ed53cef..234f342 100644
--- a/src/coco.c
+++ b/src/coco.c
@@ -7,46 +7,39 @@
 #include "parser.h"
 #include "box.h"
 
+#ifdef OPENCV
+#include "opencv2/highgui/highgui_c.h"
+#endif
 
 char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"};
 
 int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
 
-void draw_coco(image im, float *box, int side, int objectness, char *label)
+void draw_coco(image im, float *pred, int side, char *label)
 {
-    int classes = 80;
-    int elems = 4+classes+objectness;
+    int classes = 1;
+    int elems = 4+classes;
     int j;
     int r, c;
 
     for(r = 0; r < side; ++r){
         for(c = 0; c < side; ++c){
             j = (r*side + c) * elems;
-            float scale = 1;
-            if(objectness) scale = 1 - box[j++];
-            int class = max_index(box+j, classes);
-            if(scale * box[j+class] > 0.2){
-                int width = box[j+class]*5 + 1;
-                printf("%f %s\n", scale * box[j+class], coco_classes[class]);
+            int class = max_index(pred+j, classes);
+            if (pred[j+class] > 0.2){
+                int width = pred[j+class]*5 + 1;
+                printf("%f %s\n", pred[j+class], "object"); //coco_classes[class-1]);
                 float red = get_color(0,class,classes);
                 float green = get_color(1,class,classes);
                 float blue = get_color(2,class,classes);
 
                 j += classes;
-                float x = box[j+0];
-                float y = box[j+1];
-                x = (x+c)/side;
-                y = (y+r)/side;
-                float w = box[j+2]; //*maxwidth;
-                float h = box[j+3]; //*maxheight;
-                h = h*h;
-                w = w*w;
 
-                int left  = (x-w/2)*im.w;
-                int right = (x+w/2)*im.w;
-                int top   = (y-h/2)*im.h;
-                int bot   = (y+h/2)*im.h;
-                draw_box_width(im, left, top, right, bot, width, red, green, blue);
+                box predict = {pred[j+0], pred[j+1], pred[j+2], pred[j+3]};
+                predict.x = (predict.x+c)/side;
+                predict.y = (predict.y+r)/side;
+                
+                draw_bbox(im, predict, width, red, green, blue);
             }
         }
     }
@@ -55,7 +48,8 @@
 
 void train_coco(char *cfgfile, char *weightfile)
 {
-    char *train_images = "/home/pjreddie/data/coco/train.txt";
+    //char *train_images = "/home/pjreddie/data/coco/train.txt";
+    char *train_images = "/home/pjreddie/data/voc/test/train.txt";
     char *backup_directory = "/home/pjreddie/backup/";
     srand(time(0));
     data_seed = time(0);
@@ -66,54 +60,57 @@
     if(weightfile){
         load_weights(&net, weightfile);
     }
-    detection_layer layer = get_network_detection_layer(net);
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 128;
-    int i = net.seen/imgs;
+    int i = *net.seen/imgs;
     data train, buffer;
 
-    int classes = layer.classes;
-    int background = layer.objectness;
-    int side = sqrt(get_detection_layer_locations(layer));
 
-    char **paths;
+    layer l = net.layers[net.n - 1];
+
+    int side = l.side;
+    int classes = l.classes;
+
     list *plist = get_paths(train_images);
     int N = plist->size;
+    char **paths = (char **)list_to_array(plist);
 
-    paths = (char **)list_to_array(plist);
-    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
+    load_args args = {0};
+    args.w = net.w;
+    args.h = net.h;
+    args.paths = paths;
+    args.n = imgs;
+    args.m = plist->size;
+    args.classes = classes;
+    args.num_boxes = side;
+    args.d = &buffer;
+    args.type = REGION_DATA;
+
+    pthread_t load_thread = load_data_in_thread(args);
     clock_t time;
     while(i*imgs < N*120){
         i += 1;
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
-        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
+        load_thread = load_data_in_thread(args);
 
         printf("Loaded: %lf seconds\n", sec(clock()-time));
 
-        /*
-           image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
-           image copy = copy_image(im);
-           draw_coco(copy, train.y.vals[114], 7, layer.objectness, "truth");
-           cvWaitKey(0);
-           free_image(copy);
-         */
+/*
+        image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
+        image copy = copy_image(im);
+        draw_coco(copy, train.y.vals[113], 7, "truth");
+        cvWaitKey(0);
+        free_image(copy);
+        */
 
         time=clock();
         float loss = train_network(net, train);
-        net.seen += imgs;
         if (avg_loss < 0) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
 
         printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
-        if((i-1)*imgs <= 80*N && i*imgs > N*80){
-            fprintf(stderr, "First stage done.\n");
-            char buff[256];
-            sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base);
-            save_weights(net, buff);
-            return;
-        }
         if(i%1000==0){
             char buff[256];
             sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
@@ -126,25 +123,52 @@
     save_weights(net, buff);
 }
 
-void convert_cocos(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes)
+void get_probs(float *predictions, int total, int classes, int inc, float **probs)
 {
     int i,j;
-    int per_box = 4+classes+(background || objectness);
-    for (i = 0; i < num_boxes*num_boxes; ++i){
-        float scale = 1;
-        if(objectness) scale = 1-predictions[i*per_box];
-        int offset = i*per_box+(background||objectness);
+    for (i = 0; i < total; ++i){
+        int index = i*inc;
+        float scale = predictions[index];
+        probs[i][0] = scale;
         for(j = 0; j < classes; ++j){
-            float prob = scale*predictions[offset+j];
+            probs[i][j] = scale*predictions[index+j+1];
+        }
+    }
+}
+void get_boxes(float *predictions, int n, int num_boxes, int per_box, box *boxes)
+{
+    int i,j;
+    for (i = 0; i < num_boxes*num_boxes; ++i){
+        for(j = 0; j < n; ++j){
+            int index = i*n+j;
+            int offset = index*per_box;
+            int row = i / num_boxes;
+            int col = i % num_boxes;
+            boxes[index].x = (predictions[offset + 0] + col) / num_boxes;
+            boxes[index].y = (predictions[offset + 1] + row) / num_boxes;
+            boxes[index].w = predictions[offset + 2];
+            boxes[index].h = predictions[offset + 3];
+        }
+    }
+}
+
+void convert_cocos(float *predictions, int classes, int num_boxes, int num, int w, int h, float thresh, float **probs, box *boxes)
+{
+    int i,j;
+    int per_box = 4+classes;
+    for (i = 0; i < num_boxes*num_boxes*num; ++i){
+        int offset = i*per_box;
+        for(j = 0; j < classes; ++j){
+            float prob = predictions[offset+j];
             probs[i][j] = (prob > thresh) ? prob : 0;
         }
         int row = i / num_boxes;
         int col = i % num_boxes;
         offset += classes;
-        boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w;
-        boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h;
-        boxes[i].w = pow(predictions[offset + 2], 2) * w;
-        boxes[i].h = pow(predictions[offset + 3], 2) * h;
+        boxes[i].x = (predictions[offset + 0] + col) / num_boxes;
+        boxes[i].y = (predictions[offset + 1] + row) / num_boxes;
+        boxes[i].w = predictions[offset + 2];
+        boxes[i].h = predictions[offset + 3];
     }
 }
 
@@ -179,6 +203,201 @@
     return atoi(p+1);
 }
 
+void validate_recall(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    char *val_images = "/home/pjreddie/data/voc/test/2007_test.txt";
+    list *plist = get_paths(val_images);
+    char **paths = (char **)list_to_array(plist);
+
+    layer l = net.layers[net.n - 1];
+
+    int num_boxes = l.side;
+    int num = l.n;
+    int classes = l.classes;
+
+    int j;
+
+    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
+    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
+    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
+
+    int N = plist->size;
+    int i=0;
+    int k;
+
+    float iou_thresh = .5;
+    float thresh = .1;
+    int total = 0;
+    int correct = 0;
+    float avg_iou = 0;
+    int nms = 1;
+    int proposals = 0;
+    int save = 1;
+
+    for (i = 0; i < N; ++i) {
+        char *path = paths[i];
+        image orig = load_image_color(path, 0, 0);
+        image resized = resize_image(orig, net.w, net.h);
+
+        float *X = resized.data;
+        float *predictions = network_predict(net, X);
+        get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
+        get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
+        if (nms) do_nms(boxes, probs, num*num_boxes*num_boxes, (classes>0) ? classes : 1, iou_thresh);
+
+        char *labelpath = find_replace(path, "images", "labels");
+        labelpath = find_replace(labelpath, "JPEGImages", "labels");
+        labelpath = find_replace(labelpath, ".jpg", ".txt");
+        labelpath = find_replace(labelpath, ".JPEG", ".txt");
+
+        int num_labels = 0;
+        box_label *truth = read_boxes(labelpath, &num_labels);
+        for(k = 0; k < num_boxes*num_boxes*num; ++k){
+            if(probs[k][0] > thresh){
+                ++proposals;
+                if(save){
+                    char buff[256];
+                    sprintf(buff, "/data/extracted/nms_preds/%d", proposals);
+                    int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
+                    int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
+                    int w = boxes[k].w * orig.w;
+                    int h = boxes[k].h * orig.h;
+                    image cropped = crop_image(orig, dx, dy, w, h);
+                    image sized = resize_image(cropped, 224, 224);
+#ifdef OPENCV
+                    save_image_jpg(sized, buff);
+#endif
+                    free_image(sized);
+                    free_image(cropped);
+                    sprintf(buff, "/data/extracted/nms_pred_boxes/%d.txt", proposals);
+                    char *im_id = basecfg(path);
+                    FILE *fp = fopen(buff, "w");
+                    fprintf(fp, "%s %d %d %d %d\n", im_id, dx, dy, dx+w, dy+h);
+                    fclose(fp);
+                    free(im_id);
+                }
+            }
+        }
+        for (j = 0; j < num_labels; ++j) {
+            ++total;
+            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
+            float best_iou = 0;
+            for(k = 0; k < num_boxes*num_boxes*num; ++k){
+                float iou = box_iou(boxes[k], t);
+                if(probs[k][0] > thresh && iou > best_iou){
+                    best_iou = iou;
+                }
+            }
+            avg_iou += best_iou;
+            if(best_iou > iou_thresh){
+                ++correct;
+            }
+        }
+        free(truth);
+        free_image(orig);
+        free_image(resized);
+        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
+    }
+}
+
+void extract_boxes(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    char *val_images = "/home/pjreddie/data/voc/test/train.txt";
+    list *plist = get_paths(val_images);
+    char **paths = (char **)list_to_array(plist);
+
+    layer l = net.layers[net.n - 1];
+
+    int num_boxes = l.side;
+    int num = l.n;
+    int classes = l.classes;
+
+    int j;
+
+    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
+    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
+    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
+
+    int N = plist->size;
+    int i=0;
+    int k;
+
+    int count = 0;
+    float iou_thresh = .3;
+
+    for (i = 0; i < N; ++i) {
+        fprintf(stderr, "%5d %5d\n", i, count);
+        char *path = paths[i];
+        image orig = load_image_color(path, 0, 0);
+        image resized = resize_image(orig, net.w, net.h);
+
+        float *X = resized.data;
+        float *predictions = network_predict(net, X);
+        get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
+        get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
+
+        char *labelpath = find_replace(path, "images", "labels");
+        labelpath = find_replace(labelpath, "JPEGImages", "labels");
+        labelpath = find_replace(labelpath, ".jpg", ".txt");
+        labelpath = find_replace(labelpath, ".JPEG", ".txt");
+
+        int num_labels = 0;
+        box_label *truth = read_boxes(labelpath, &num_labels);
+        FILE *label = stdin;
+        for(k = 0; k < num_boxes*num_boxes*num; ++k){
+            int overlaps = 0;
+            for (j = 0; j < num_labels; ++j) {
+                box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
+                float iou = box_iou(boxes[k], t);
+                if (iou > iou_thresh){
+                    if (!overlaps) {
+                        char buff[256];
+                        sprintf(buff, "/data/extracted/labels/%d.txt", count);
+                        label = fopen(buff, "w");
+                        overlaps = 1;
+                    }
+                    fprintf(label, "%d %f\n", truth[j].id, iou);
+                }
+            }
+            if (overlaps) {
+                char buff[256];
+                sprintf(buff, "/data/extracted/imgs/%d", count++);
+                int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
+                int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
+                int w = boxes[k].w * orig.w;
+                int h = boxes[k].h * orig.h;
+                image cropped = crop_image(orig, dx, dy, w, h);
+                image sized = resize_image(cropped, 224, 224);
+#ifdef OPENCV
+                save_image_jpg(sized, buff);
+#endif
+                free_image(sized);
+                free_image(cropped);
+                fclose(label);
+            }
+        }
+        free(truth);
+        free_image(orig);
+        free_image(resized);
+    }
+}
+
 void validate_coco(char *cfgfile, char *weightfile)
 {
     network net = parse_network_cfg(cfgfile);
@@ -186,7 +405,6 @@
         load_weights(&net, weightfile);
     }
     set_batch_network(&net, 1);
-    detection_layer layer = get_network_detection_layer(net);
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     srand(time(0));
 
@@ -194,10 +412,9 @@
     list *plist = get_paths("data/coco_val_5k.list");
     char **paths = (char **)list_to_array(plist);
 
-    int classes = layer.classes;
-    int objectness = layer.objectness;
-    int background = layer.background;
-    int num_boxes = sqrt(get_detection_layer_locations(layer));
+    int num_boxes = 9;
+    int num = 4;
+    int classes = 1;
 
     int j;
     char buff[1024];
@@ -205,9 +422,9 @@
     FILE *fp = fopen(buff, "w");
     fprintf(fp, "[\n");
 
-    box *boxes = calloc(num_boxes*num_boxes, sizeof(box));
-    float **probs = calloc(num_boxes*num_boxes, sizeof(float *));
-    for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *));
+    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
+    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
+    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes, sizeof(float *));
 
     int m = plist->size;
     int i=0;
@@ -217,6 +434,11 @@
     int nms = 1;
     float iou_thresh = .5;
 
+    load_args args = {0};
+    args.w = net.w;
+    args.h = net.h;
+    args.type = IMAGE_DATA;
+
     int nthreads = 8;
     image *val = calloc(nthreads, sizeof(image));
     image *val_resized = calloc(nthreads, sizeof(image));
@@ -224,7 +446,10 @@
     image *buf_resized = calloc(nthreads, sizeof(image));
     pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
     for(t = 0; t < nthreads; ++t){
-        thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
+        args.path = paths[i+t];
+        args.im = &buf[t];
+        args.resized = &buf_resized[t];
+        thr[t] = load_data_in_thread(args);
     }
     time_t start = time(0);
     for(i = nthreads; i < m+nthreads; i += nthreads){
@@ -235,7 +460,10 @@
             val_resized[t] = buf_resized[t];
         }
         for(t = 0; t < nthreads && i+t < m; ++t){
-            thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
+            args.path = paths[i+t];
+            args.im = &buf[t];
+            args.resized = &buf_resized[t];
+            thr[t] = load_data_in_thread(args);
         }
         for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
             char *path = paths[i+t-nthreads];
@@ -244,7 +472,7 @@
             float *predictions = network_predict(net, X);
             int w = val[t].w;
             int h = val[t].h;
-            convert_cocos(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes);
+            convert_cocos(predictions, classes, num_boxes, num, w, h, thresh, probs, boxes);
             if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
             print_cocos(fp, image_id, boxes, probs, num_boxes, classes, w, h);
             free_image(val[t]);
@@ -264,7 +492,6 @@
     if(weightfile){
         load_weights(&net, weightfile);
     }
-    detection_layer layer = get_network_detection_layer(net);
     set_batch_network(&net, 1);
     srand(2222222);
     clock_t time;
@@ -284,7 +511,7 @@
         time=clock();
         float *predictions = network_predict(net, X);
         printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
-        draw_coco(im, predictions, 7, layer.objectness, "predictions");
+        draw_coco(im, predictions, 7, "predictions");
         free_image(im);
         free_image(sized);
 #ifdef OPENCV
@@ -307,5 +534,6 @@
     char *filename = (argc > 5) ? argv[5]: 0;
     if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename);
     else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
-    else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
+    else if(0==strcmp(argv[2], "extract")) extract_boxes(cfg, weights);
+    else if(0==strcmp(argv[2], "valid")) validate_recall(cfg, weights);
 }

--
Gitblit v1.10.0