From aa5996d58e68edfbefe51061856aecd549dd09c4 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 13 Jan 2015 01:27:08 +0000
Subject: [PATCH] Faster

---
 src/cnn.c |   88 ++++++++++++++++++++++++++++++++++++-------
 1 files changed, 73 insertions(+), 15 deletions(-)

diff --git a/src/cnn.c b/src/cnn.c
index 1c74e5c..e587a1b 100644
--- a/src/cnn.c
+++ b/src/cnn.c
@@ -71,11 +71,11 @@
 }
 
 
-void train_detection_net()
+void train_detection_net(char *cfgfile)
 {
     float avg_loss = 1;
     //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
-    network net = parse_network_cfg("cfg/detnet.cfg");
+    network net = parse_network_cfg(cfgfile);
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 1024;
     srand(time(0));
@@ -115,6 +115,57 @@
     }
 }
 
+void validate_detection_net(char *cfgfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    list *plist = get_paths("/home/pjreddie/data/imagenet/detection.val");
+    char **paths = (char **)list_to_array(plist);
+
+    int m = plist->size;
+    int i = 0;
+    int splits = 50;
+    int num = (i+1)*m/splits - i*m/splits;
+
+    fprintf(stderr, "%d\n", m);
+    data val, buffer;
+    pthread_t load_thread = load_data_thread(paths, num, 0, 0, 245, 224, 224, &buffer);
+    clock_t time;
+    for(i = 1; i <= splits; ++i){
+        time=clock();
+        pthread_join(load_thread, 0);
+        val = buffer;
+        normalize_data_rows(val);
+
+        num = (i+1)*m/splits - i*m/splits;
+        char **part = paths+(i*m/splits);
+        if(i != splits) load_thread = load_data_thread(part, num, 0, 0, 245, 224, 224, &buffer);
+ 
+        fprintf(stderr, "Loaded: %lf seconds\n", sec(clock()-time));
+        matrix pred = network_predict_data(net, val);
+        int j, k;
+        for(j = 0; j < pred.rows; ++j){
+            for(k = 0; k < pred.cols; k += 5){
+                if (pred.vals[j][k] > .005){
+                    int index = k/5; 
+                    int r = index/7;
+                    int c = index%7;
+                    float y = (32.*(r + pred.vals[j][k+1]))/224.;
+                    float x = (32.*(c + pred.vals[j][k+2]))/224.;
+                    float h = (256.*(pred.vals[j][k+3]))/224.;
+                    float w = (256.*(pred.vals[j][k+4]))/224.;
+                    printf("%d %f %f %f %f %f\n", (i-1)*m/splits + j + 1, pred.vals[j][k], y, x, h, w);
+                }
+            }
+        }
+
+        time=clock();
+        free_data(val);
+    }
+}
+
 void train_imagenet_distributed(char *address)
 {
     float avg_loss = 1;
@@ -159,10 +210,10 @@
     //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
     srand(time(0));
     network net = parse_network_cfg(cfgfile);
-    //set_learning_network(&net, net.learning_rate, 0, .0005);
+    set_learning_network(&net, net.learning_rate, 0, net.decay);
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 1024;
-    int i = 47900;
+    int i = 77700;
     char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
     list *plist = get_paths("/data/imagenet/cls.train.list");
     char **paths = (char **)list_to_array(plist);
@@ -177,7 +228,9 @@
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
-        normalize_data_rows(train);
+        //normalize_data_rows(train);
+        translate_data_rows(train, -128);
+        scale_data_rows(train, 1./128);
         load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
@@ -265,8 +318,10 @@
     int i = 0;
     char *filename = "data/test.jpg";
 
-    image im = load_image_color(filename, 224, 224);
-    z_normalize_image(im);
+    image im = load_image_color(filename, 256, 256);
+    //z_normalize_image(im);
+    translate_image(im, -128);
+    scale_image(im, 1/128.);
     float *X = im.data;
     forward_network(net, X, 0, 1);
     for(i = 0; i < net.n; ++i){
@@ -352,9 +407,9 @@
         if(count%10 == 0){
             float test_acc = network_accuracy(net, test);
             printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
-            char buff[256];
-            sprintf(buff, "unikitty/cifar10_%d.cfg", count);
-            save_network(net, buff);
+            //char buff[256];
+            //sprintf(buff, "unikitty/cifar10_%d.cfg", count);
+            //save_network(net, buff);
         }else{
             printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
         }
@@ -482,7 +537,7 @@
     cvWaitKey(0);
 }
 
-void test_gpu_net()
+void test_correct_nist()
 {
     srand(222222);
     network net = parse_network_cfg("cfg/nist.cfg");
@@ -523,11 +578,12 @@
     clock_t time;
     int count = 0;
     network net;
+
+    srand(222222);
+    net = parse_network_cfg("cfg/net.cfg");
     int imgs = net.batch;
 
     count = 0;
-    srand(222222);
-    net = parse_network_cfg("cfg/net.cfg");
     while(++count <= 5){
         time=clock();
         data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
@@ -624,9 +680,9 @@
     }
 #endif
 
-    if(0==strcmp(argv[1], "detection")) train_detection_net();
-    else if(0==strcmp(argv[1], "cifar")) train_cifar10();
+    if(0==strcmp(argv[1], "cifar")) train_cifar10();
     else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
+    else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist();
     else if(0==strcmp(argv[1], "test")) test_imagenet();
     else if(0==strcmp(argv[1], "server")) run_server();
 
@@ -638,6 +694,7 @@
         fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]);
         return 0;
     }
+    else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]);
     else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
     else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]);
     else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
@@ -646,6 +703,7 @@
     else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
     else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
     else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]);
+    else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]);
     else if(argc < 4){
         fprintf(stderr, "usage: %s <function> <filename> <filename>\n", argv[0]);
         return 0;

--
Gitblit v1.10.0