From aa5996d58e68edfbefe51061856aecd549dd09c4 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 13 Jan 2015 01:27:08 +0000
Subject: [PATCH] Faster

---
 src/cnn.c | 1126 +++++++++++++++++++---------------------------------------
 1 files changed, 375 insertions(+), 751 deletions(-)

diff --git a/src/cnn.c b/src/cnn.c
index 46248ed..e587a1b 100644
--- a/src/cnn.c
+++ b/src/cnn.c
@@ -8,6 +8,8 @@
 #include "matrix.h"
 #include "utils.h"
 #include "mini_blas.h"
+#include "matrix.h"
+#include "server.h"
 
 #include <time.h>
 #include <stdlib.h>
@@ -16,256 +18,12 @@
 #define _GNU_SOURCE
 #include <fenv.h>
 
-void test_convolve()
-{
-    image dog = load_image("dog.jpg",300,400);
-    printf("dog channels %d\n", dog.c);
-    image kernel = make_random_image(3,3,dog.c);
-    image edge = make_image(dog.h, dog.w, 1);
-    int i;
-    clock_t start = clock(), end;
-    for(i = 0; i < 1000; ++i){
-        convolve(dog, kernel, 1, 0, edge, 1);
-    }
-    end = clock();
-    printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
-    show_image_layers(edge, "Test Convolve");
-}
-
-#ifdef GPU
-
-void test_convolutional_layer()
-{
-/*
-    int i;
-    image dog = load_image("data/dog.jpg",224,224);
-    network net = parse_network_cfg("cfg/convolutional.cfg");
-    //    data test = load_cifar10_data("data/cifar10/test_batch.bin");
-    //    float *X = calloc(net.batch*test.X.cols, sizeof(float));
-    //    float *y = calloc(net.batch*test.y.cols, sizeof(float));
-    int in_size = get_network_input_size(net)*net.batch;
-    int del_size = get_network_output_size_layer(net, 0)*net.batch;
-    int size = get_network_output_size(net)*net.batch;
-    float *X = calloc(in_size, sizeof(float));
-    float *y = calloc(size, sizeof(float));
-    for(i = 0; i < in_size; ++i){
-        X[i] = dog.data[i%get_network_input_size(net)];
-    }
-    //    get_batch(test, net.batch, X, y);
-    clock_t start, end;
-    cl_mem input_cl = cl_make_array(X, in_size);
-    cl_mem truth_cl = cl_make_array(y, size);
-
-    forward_network_gpu(net, input_cl, truth_cl, 1);
-    start = clock();
-    forward_network_gpu(net, input_cl, truth_cl, 1);
-    end = clock();
-    float gpu_sec = (float)(end-start)/CLOCKS_PER_SEC;
-    printf("forward gpu: %f sec\n", gpu_sec);
-    start = clock();
-    backward_network_gpu(net, input_cl);
-    end = clock();
-    gpu_sec = (float)(end-start)/CLOCKS_PER_SEC;
-    printf("backward gpu: %f sec\n", gpu_sec);
-    //float gpu_cost = get_network_cost(net);
-    float *gpu_out = calloc(size, sizeof(float));
-    memcpy(gpu_out, get_network_output(net), size*sizeof(float));
-
-    float *gpu_del = calloc(del_size, sizeof(float));
-    memcpy(gpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float));
-    */
-
-    /*
-       start = clock();
-       forward_network(net, X, y, 1);
-       backward_network(net, X);
-       float cpu_cost = get_network_cost(net);
-       end = clock();
-       float cpu_sec = (float)(end-start)/CLOCKS_PER_SEC;
-       float *cpu_out = calloc(size, sizeof(float));
-       memcpy(cpu_out, get_network_output(net), size*sizeof(float));
-       float *cpu_del = calloc(del_size, sizeof(float));
-       memcpy(cpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float));
-
-       float sum = 0;
-       float del_sum = 0;
-       for(i = 0; i < size; ++i) sum += pow(gpu_out[i] - cpu_out[i], 2);
-       for(i = 0; i < del_size; ++i) {
-    //printf("%f %f\n", cpu_del[i], gpu_del[i]);
-    del_sum += pow(cpu_del[i] - gpu_del[i], 2);
-    }
-    printf("GPU cost: %f, CPU cost: %f\n", gpu_cost, cpu_cost);
-    printf("gpu: %f sec, cpu: %f sec, diff: %f, delta diff: %f, size: %d\n", gpu_sec, cpu_sec, sum, del_sum, size);
-     */
-}
-
-/*
-void test_col2im()
-{
-    float col[] =  {1,2,1,2,
-        1,2,1,2,
-        1,2,1,2,
-        1,2,1,2,
-        1,2,1,2,
-        1,2,1,2,
-        1,2,1,2,
-        1,2,1,2,
-        1,2,1,2};
-    float im[16] = {0};
-    int batch = 1;
-    int channels = 1;
-    int height=4;
-    int width=4;
-    int ksize = 3;
-    int stride = 1;
-    int pad = 0;
-    //col2im_gpu(col, batch,
-    //        channels,  height,  width,
-    //        ksize,  stride, pad, im);
-    int i;
-    for(i = 0; i < 16; ++i)printf("%f,", im[i]);
-    printf("\n");
-       float data_im[] = {
-       1,2,3,4,
-       5,6,7,8,
-       9,10,11,12
-       };
-       float data_col[18] = {0};
-       im2col_cpu(data_im,  batch,
-       channels,   height,  width,
-       ksize,   stride,  pad, data_col) ;
-       for(i = 0; i < 18; ++i)printf("%f,", data_col[i]);
-       printf("\n");
-}
-*/
-
-#endif
-
-void test_convolve_matrix()
-{
-    image dog = load_image("dog.jpg",300,400);
-    printf("dog channels %d\n", dog.c);
-
-    int size = 11;
-    int stride = 4;
-    int n = 40;
-    float *filters = make_random_image(size, size, dog.c*n).data;
-
-    int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
-    int mh = (size*size*dog.c);
-    float *matrix = calloc(mh*mw, sizeof(float));
-
-    image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
-
-    int i;
-    clock_t start = clock(), end;
-    for(i = 0; i < 1000; ++i){
-        //im2col_cpu(dog.data,1, dog.c,  dog.h,  dog.w,  size,  stride, 0, matrix);
-        gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
-    }
-    end = clock();
-    printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
-    show_image_layers(edge, "Test Convolve");
-    cvWaitKey(0);
-}
-
-void test_color()
-{
-    image dog = load_image("test_color.png", 300, 400);
-    show_image_layers(dog, "Test Color");
-}
-
-void verify_convolutional_layer()
-{
-/*
-    srand(0);
-    int i;
-    int n = 1;
-    int stride = 1;
-    int size = 3;
-    float eps = .00000001;
-    image test = make_random_image(5,5, 1);
-    convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, 0, RELU,0,0,0);
-    image out = get_convolutional_image(layer);
-    float **jacobian = calloc(test.h*test.w*test.c, sizeof(float));
-
-    forward_convolutional_layer(layer, test.data);
-    image base = copy_image(out);
-
-    for(i = 0; i < test.h*test.w*test.c; ++i){
-        test.data[i] += eps;
-        forward_convolutional_layer(layer, test.data);
-        image partial = copy_image(out);
-        subtract_image(partial, base);
-        scale_image(partial, 1/eps);
-        jacobian[i] = partial.data;
-        test.data[i] -= eps;
-    }
-    float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float));
-    image in_delta = make_image(test.h, test.w, test.c);
-    image out_delta = get_convolutional_delta(layer);
-    for(i = 0; i < out.h*out.w*out.c; ++i){
-        out_delta.data[i] = 1;
-        backward_convolutional_layer(layer, in_delta.data);
-        image partial = copy_image(in_delta);
-        jacobian2[i] = partial.data;
-        out_delta.data[i] = 0;
-    }
-    int j;
-    float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
-    float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
-    for(i = 0; i < test.h*test.w*test.c; ++i){
-        for(j =0 ; j < out.h*out.w*out.c; ++j){
-            j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
-            j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
-            printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
-        }
-    }
-
-
-    image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
-    image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
-    printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
-    show_image(mj1, "forward jacobian");
-    show_image(mj2, "backward jacobian");
-    */
-}
-
 void test_load()
 {
     image dog = load_image("dog.jpg", 300, 400);
     show_image(dog, "Test Load");
     show_image_layers(dog, "Test Load");
 }
-void test_upsample()
-{
-    image dog = load_image("dog.jpg", 300, 400);
-    int n = 3;
-    image up = make_image(n*dog.h, n*dog.w, dog.c);
-    upsample_image(dog, n, up);
-    show_image(up, "Test Upsample");
-    show_image_layers(up, "Test Upsample");
-}
-
-void test_rotate()
-{
-    int i;
-    image dog = load_image("dog.jpg",300,400);
-    clock_t start = clock(), end;
-    for(i = 0; i < 1001; ++i){
-        rotate_image(dog);
-    }
-    end = clock();
-    printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
-    show_image(dog, "Test Rotate");
-
-    image random = make_random_image(3,3,3);
-    show_image(random, "Test Rotate Random");
-    rotate_image(random);
-    show_image(random, "Test Rotate Random");
-    rotate_image(random);
-    show_image(random, "Test Rotate Random");
-}
 
 void test_parser()
 {
@@ -273,135 +31,216 @@
     save_network(net, "cfg/trained_imagenet_smaller.cfg");
 }
 
-void train_asirra()
+#define AMNT 3
+void draw_detection(image im, float *box, int side)
 {
-    network net = parse_network_cfg("cfg/imagenet.cfg");
-    int imgs = 1000/net.batch+1;
-    //imgs = 1;
-    srand(2222222);
-    int i = 0;
-    char *labels[] = {"cat","dog"};
-
-    list *plist = get_paths("data/assira/train.list");
-    char **paths = (char **)list_to_array(plist);
-    int m = plist->size;
-    free_list(plist);
-
-    clock_t time;
-
-    while(1){
-        i += 1;
-        time=clock();
-        data train = load_data_random(imgs*net.batch, paths, m, labels, 2, 256, 256);
-        normalize_data_rows(train);
-        printf("Loaded: %lf seconds\n", sec(clock()-time));
-        time=clock();
-        //float loss = train_network_data(net, train, imgs);
-        float loss = 0;
-        printf("%d: %f, Time: %lf seconds\n", i*net.batch*imgs, loss, sec(clock()-time));
-        free_data(train);
-        if(i%10==0){
-            char buff[256];
-            sprintf(buff, "cfg/asirra_backup_%d.cfg", i);
-            save_network(net, buff);
+    int j;
+    int r, c;
+    float amount[AMNT] = {0};
+    for(r = 0; r < side*side; ++r){
+        float val = box[r*5];
+        for(j = 0; j < AMNT; ++j){
+            if(val > amount[j]) {
+                float swap = val;
+                val = amount[j];
+                amount[j] = swap;
+            }
         }
-        //lr *= .99;
     }
+    float smallest = amount[AMNT-1];
+
+    for(r = 0; r < side; ++r){
+        for(c = 0; c < side; ++c){
+            j = (r*side + c) * 5;
+            printf("Prob: %f\n", box[j]);
+            if(box[j] >= smallest){
+                int d = im.w/side;
+                int y = r*d+box[j+1]*d;
+                int x = c*d+box[j+2]*d;
+                int h = box[j+3]*256;
+                int w = box[j+4]*256;
+                //printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
+                //printf("%d %d %d %d\n", x, y, w, h);
+                //printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
+                draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2);
+            }
+        }
+    }
+    show_image(im, "box");
+    cvWaitKey(0);
 }
 
-void train_detection_net()
+
+void train_detection_net(char *cfgfile)
 {
     float avg_loss = 1;
     //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
-    network net = parse_network_cfg("cfg/detnet.cfg");
+    network net = parse_network_cfg(cfgfile);
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = 1000/net.batch+1;
-    //srand(time(0));
-    srand(23410);
+    int imgs = 1024;
+    srand(time(0));
+    //srand(23410);
     int i = 0;
     list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt");
     char **paths = (char **)list_to_array(plist);
     printf("%d\n", plist->size);
+    data train, buffer;
+    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
     clock_t time;
     while(1){
         i += 1;
         time=clock();
-        data train = load_data_detection_random(imgs*net.batch, paths, plist->size, 256, 256, 8, 8, 256);
-        //translate_data_rows(train, -144);
-        /*
-        image im = float_to_image(256, 256, 3, train.X.vals[0]);
-        float *truth = train.y.vals[0];
-        int j;
-        int r, c;
-        for(r = 0; r < 8; ++r){
-            for(c = 0; c < 8; ++c){
-                j = (r*8 + c) * 5;
-                if(truth[j]){
-                    int d = 256/8;
-                    int y = r*d+truth[j+1]*d;
-                    int x = c*d+truth[j+2]*d;
-                    int h = truth[j+3]*256;
-                    int w = truth[j+4]*256;
-                    printf("%f %f %f %f\n", truth[j+1], truth[j+2], truth[j+3], truth[j+4]);
-                    printf("%d %d %d %d\n", x, y, w, h);
-                    printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
-                    draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2);
-                }
-            }
-        }
-        show_image(im, "box");
-        cvWaitKey(0);
+        pthread_join(load_thread, 0);
+        train = buffer;
+        load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
+        //data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256);
+
+/*
+        image im = float_to_image(224, 224, 3, train.X.vals[923]);
+        draw_detection(im, train.y.vals[923], 7);
         */
 
         normalize_data_rows(train);
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
-#ifdef GPU
-        float loss = train_network_data_gpu(net, train, imgs);
+        float loss = train_network(net, train);
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch);
-#endif
-        free_data(train);
-        if(i%10==0){
+        if(i%100==0){
             char buff[256];
             sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i);
             save_network(net, buff);
         }
+        free_data(train);
     }
 }
 
+void validate_detection_net(char *cfgfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
 
-void train_imagenet()
+    list *plist = get_paths("/home/pjreddie/data/imagenet/detection.val");
+    char **paths = (char **)list_to_array(plist);
+
+    int m = plist->size;
+    int i = 0;
+    int splits = 50;
+    int num = (i+1)*m/splits - i*m/splits;
+
+    fprintf(stderr, "%d\n", m);
+    data val, buffer;
+    pthread_t load_thread = load_data_thread(paths, num, 0, 0, 245, 224, 224, &buffer);
+    clock_t time;
+    for(i = 1; i <= splits; ++i){
+        time=clock();
+        pthread_join(load_thread, 0);
+        val = buffer;
+        normalize_data_rows(val);
+
+        num = (i+1)*m/splits - i*m/splits;
+        char **part = paths+(i*m/splits);
+        if(i != splits) load_thread = load_data_thread(part, num, 0, 0, 245, 224, 224, &buffer);
+ 
+        fprintf(stderr, "Loaded: %lf seconds\n", sec(clock()-time));
+        matrix pred = network_predict_data(net, val);
+        int j, k;
+        for(j = 0; j < pred.rows; ++j){
+            for(k = 0; k < pred.cols; k += 5){
+                if (pred.vals[j][k] > .005){
+                    int index = k/5; 
+                    int r = index/7;
+                    int c = index%7;
+                    float y = (32.*(r + pred.vals[j][k+1]))/224.;
+                    float x = (32.*(c + pred.vals[j][k+2]))/224.;
+                    float h = (256.*(pred.vals[j][k+3]))/224.;
+                    float w = (256.*(pred.vals[j][k+4]))/224.;
+                    printf("%d %f %f %f %f %f\n", (i-1)*m/splits + j + 1, pred.vals[j][k], y, x, h, w);
+                }
+            }
+        }
+
+        time=clock();
+        free_data(val);
+    }
+}
+
+void train_imagenet_distributed(char *address)
 {
     float avg_loss = 1;
-    //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
-    network net = parse_network_cfg("cfg/alexnet.part");
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = 1000/net.batch+1;
     srand(time(0));
+    network net = parse_network_cfg("cfg/net.cfg");
+    set_learning_network(&net, 0, 1, 0);
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = net.batch;
     int i = 0;
     char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
     list *plist = get_paths("/data/imagenet/cls.train.list");
     char **paths = (char **)list_to_array(plist);
     printf("%d\n", plist->size);
     clock_t time;
+    data train, buffer;
+    pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
+    while(1){
+        i += 1;
+
+        time=clock();
+        client_update(net, address);
+        printf("Updated: %lf seconds\n", sec(clock()-time));
+
+        time=clock();
+        pthread_join(load_thread, 0);
+        train = buffer;
+        normalize_data_rows(train);
+        load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+        time=clock();
+
+        float loss = train_network(net, train);
+        avg_loss = avg_loss*.9 + loss*.1;
+        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
+        free_data(train);
+    }
+}
+
+void train_imagenet(char *cfgfile)
+{
+    float avg_loss = 1;
+    //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
+    srand(time(0));
+    network net = parse_network_cfg(cfgfile);
+    set_learning_network(&net, net.learning_rate, 0, net.decay);
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = 1024;
+    int i = 77700;
+    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+    list *plist = get_paths("/data/imagenet/cls.train.list");
+    char **paths = (char **)list_to_array(plist);
+    printf("%d\n", plist->size);
+    clock_t time;
+    pthread_t load_thread;
+    data train;
+    data buffer;
+    load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
     while(1){
         i += 1;
         time=clock();
-        data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
-        //translate_data_rows(train, -144);
-        normalize_data_rows(train);
+        pthread_join(load_thread, 0);
+        train = buffer;
+        //normalize_data_rows(train);
+        translate_data_rows(train, -128);
+        scale_data_rows(train, 1./128);
+        load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
-#ifdef GPU
-        float loss = train_network_data_gpu(net, train, imgs);
+        float loss = train_network(net, train);
         avg_loss = avg_loss*.9 + loss*.1;
-        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch);
-#endif
+        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
         free_data(train);
-        if(i%10==0){
+        if(i%100==0){
             char buff[256];
-            sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i);
+            sprintf(buff, "/home/pjreddie/imagenet_backup/net_%d.cfg", i);
             save_network(net, buff);
         }
     }
@@ -409,7 +248,7 @@
 
 void validate_imagenet(char *filename)
 {
-    int i;
+    int i = 0;
     network net = parse_network_cfg(filename);
     srand(time(0));
 
@@ -422,72 +261,89 @@
 
     clock_t time;
     float avg_acc = 0;
+    float avg_top5 = 0;
     int splits = 50;
+    int num = (i+1)*m/splits - i*m/splits;
 
-    for(i = 0; i < splits; ++i){
+    data val, buffer;
+    pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
+    for(i = 1; i <= splits; ++i){
         time=clock();
-        char **part = paths+(i*m/splits);
-        int num = (i+1)*m/splits - i*m/splits;
-        data val = load_data(part, num, labels, 1000, 256, 256);
 
+        pthread_join(load_thread, 0);
+        val = buffer;
         normalize_data_rows(val);
+
+        num = (i+1)*m/splits - i*m/splits;
+        char **part = paths+(i*m/splits);
+        if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
         printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
+
         time=clock();
-#ifdef GPU
-        float acc = network_accuracy_gpu(net, val);
-        avg_acc += acc;
-        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, acc, avg_acc/(i+1), sec(clock()-time), val.X.rows);
-#endif
+        float *acc = network_accuracies(net, val);
+        avg_acc += acc[0];
+        avg_top5 += acc[1];
+        printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
         free_data(val);
     }
 }
 
-void draw_detection(image im, float *box)
+void test_detection(char *cfgfile)
 {
-    int j;
-    int r, c;
-    for(r = 0; r < 8; ++r){
-        for(c = 0; c < 8; ++c){
-            j = (r*8 + c) * 5;
-            printf("Prob: %f\n", box[j]);
-            if(box[j] > .05){
-                int d = 256/8;
-                int y = r*d+box[j+1]*d;
-                int x = c*d+box[j+2]*d;
-                int h = box[j+3]*256;
-                int w = box[j+4]*256;
-                printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
-                printf("%d %d %d %d\n", x, y, w, h);
-                printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
-                draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2);
-            }
-        }
-    }
-    show_image(im, "box");
-    cvWaitKey(0);
-}
-
-void test_detection()
-{
-    network net = parse_network_cfg("cfg/detnet.test");
+    network net = parse_network_cfg(cfgfile);
+    set_batch_network(&net, 1);
     srand(2222222);
     clock_t time;
     char filename[256];
     while(1){
         fgets(filename, 256, stdin);
         strtok(filename, "\n");
-        image im = load_image_color(filename, 256, 256);
+        image im = load_image_color(filename, 224, 224);
         z_normalize_image(im);
         printf("%d %d %d\n", im.h, im.w, im.c);
         float *X = im.data;
         time=clock();
         float *predictions = network_predict(net, X);
         printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
-        draw_detection(im, predictions);
+        draw_detection(im, predictions, 7);
         free_image(im);
     }
 }
 
+void test_init(char *cfgfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    set_batch_network(&net, 1);
+    srand(2222222);
+    int i = 0;
+    char *filename = "data/test.jpg";
+
+    image im = load_image_color(filename, 256, 256);
+    //z_normalize_image(im);
+    translate_image(im, -128);
+    scale_image(im, 1/128.);
+    float *X = im.data;
+    forward_network(net, X, 0, 1);
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            image output = get_convolutional_image(layer);
+            int size = output.h*output.w*output.c;
+            float v = variance_array(layer.output, size);
+            float m = mean_array(layer.output, size);
+            printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v);
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            int size = layer.outputs;
+            float v = variance_array(layer.output, size);
+            float m = mean_array(layer.output, size);
+            printf("%d: Connected, mean: %f, variance %f\n", i, m, v);
+        }
+    }
+    free_image(im);
+}
+
 void test_imagenet()
 {
     network net = parse_network_cfg("cfg/imagenet_test.cfg");
@@ -545,84 +401,90 @@
     int iters = 10000/net.batch;
     data train = load_all_cifar10();
     while(++count <= 10000){
-        clock_t start = clock(), end;
+        clock_t time = clock();
         float loss = train_network_sgd(net, train, iters);
-        end = clock();
-        //visualize_network(net);
-        //cvWaitKey(5000);
 
-        //float test_acc = network_accuracy(net, test);
-        //printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
         if(count%10 == 0){
             float test_acc = network_accuracy(net, test);
-            printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
-            char buff[256];
-            sprintf(buff, "/home/pjreddie/cifar/cifar10_2_%d.cfg", count);
-            save_network(net, buff);
+            printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
+            //char buff[256];
+            //sprintf(buff, "unikitty/cifar10_%d.cfg", count);
+            //save_network(net, buff);
         }else{
-            printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+            printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
         }
+
     }
     free_data(train);
 }
 
-void test_vince()
-{
-    network net = parse_network_cfg("cfg/vince.cfg");
-    data train = load_categorical_data_csv("images/vince.txt", 144, 2);
-    normalize_data_rows(train);
-
-    int count = 0;
-    //float lr = .00005;
-    //float momentum = .9;
-    //float decay = 0.0001;
-    //decay = 0;
-    int batch = 10000;
-    while(++count <= 10000){
-        float loss = train_network_sgd(net, train, batch);
-        printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
-    }
-}
-
-void test_nist_single()
+void compare_nist(char *p1,char *p2)
 {
     srand(222222);
-    network net = parse_network_cfg("cfg/nist_single.cfg");
-    data train = load_categorical_data_csv("data/mnist/mnist_tiny.csv", 0, 10);
-    normalize_data_rows(train);
-    float loss = train_network_sgd(net, train, 1);
-    printf("Loss: %f, LR: %f, Momentum: %f, Decay: %f\n", loss, net.learning_rate, net.momentum, net.decay);
-
-}
-
-void test_nist()
-{
-    srand(222222);
-    network net = parse_network_cfg("cfg/nist_final.cfg");
+    network n1 = parse_network_cfg(p1);
+    network n2 = parse_network_cfg(p2);
     data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
-    translate_data_rows(test, -144);
+    normalize_data_rows(test);
+    compare_networks(n1, n2, test);
+}
+
+void test_nist(char *path)
+{
+    srand(222222);
+    network net = parse_network_cfg(path);
+    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+    normalize_data_rows(test);
     clock_t start = clock(), end;
-    float test_acc = network_accuracy_multi(net, test,16);
+    float test_acc = network_accuracy(net, test);
     end = clock();
     printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
 }
 
-void train_nist()
+void train_nist(char *cfgfile)
 {
     srand(222222);
-    network net = parse_network_cfg("cfg/nist.cfg");
+    // srand(time(0));
     data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
     data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
-    translate_data_rows(train, -144);
-    translate_data_rows(test, -144);
+    network net = parse_network_cfg(cfgfile);
+    int count = 0;
+    int iters = 6000/net.batch + 1;
+    while(++count <= 100){
+        clock_t start = clock(), end;
+        normalize_data_rows(train);
+        normalize_data_rows(test);
+        float loss = train_network_sgd(net, train, iters);
+        float test_acc = 0;
+        if(count%1 == 0) test_acc = network_accuracy(net, test);
+        end = clock();
+        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
+    }
+    free_data(train);
+    free_data(test);
+    char buff[256];
+    sprintf(buff, "%s.trained", cfgfile);
+    save_network(net, buff);
+}
+
+void train_nist_distributed(char *address)
+{
+    srand(time(0));
+    network net = parse_network_cfg("cfg/nist.client");
+    data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
+    //data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+    normalize_data_rows(train);
+    //normalize_data_rows(test);
     int count = 0;
     int iters = 50000/net.batch;
+    iters = 1000/net.batch + 1;
     while(++count <= 2000){
         clock_t start = clock(), end;
         float loss = train_network_sgd(net, train, iters);
+        client_update(net, address);
         end = clock();
-        float test_acc = network_accuracy(net, test);
-        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
+        //float test_acc = network_accuracy_gpu(net, test);
+        //float test_acc = 0;
+        printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
     }
 }
 
@@ -652,96 +514,17 @@
             lr /= 2; 
         }
         matrix partial = network_predict_data(net, test);
-        float acc = matrix_accuracy(test.y, partial);
+        float acc = matrix_topk_accuracy(test.y, partial,1);
         printf("Model Accuracy: %lf\n", acc);
         matrix_add_matrix(partial, prediction);
-        acc = matrix_accuracy(test.y, prediction);
+        acc = matrix_topk_accuracy(test.y, prediction,1);
         printf("Current Ensemble Accuracy: %lf\n", acc);
         free_matrix(partial);
     }
-    float acc = matrix_accuracy(test.y, prediction);
+    float acc = matrix_topk_accuracy(test.y, prediction,1);
     printf("Full Ensemble Accuracy: %lf\n", acc);
 }
 
-void test_random_classify()
-{
-    network net = parse_network_cfg("connected.cfg");
-    matrix m = csv_to_matrix("train.csv");
-    //matrix ho = hold_out_matrix(&m, 2500);
-    float *truth = pop_column(&m, 0);
-    //float *ho_truth = pop_column(&ho, 0);
-    int i;
-    clock_t start = clock(), end;
-    int count = 0;
-    while(++count <= 300){
-        for(i = 0; i < m.rows; ++i){
-            int index = rand()%m.rows;
-            //image p = float_to_image(1690,1,1,m.vals[index]);
-            //normalize_image(p);
-            forward_network(net, m.vals[index], 0, 1);
-            float *out = get_network_output(net);
-            float *delta = get_network_delta(net);
-            //printf("%f\n", out[0]);
-            delta[0] = truth[index] - out[0];
-            // printf("%f\n", delta[0]);
-            //printf("%f %f\n", truth[index], out[0]);
-            //backward_network(net, m.vals[index], );
-            update_network(net);
-        }
-        //float test_acc = error_network(net, m, truth);
-        //float valid_acc = error_network(net, ho, ho_truth);
-        //printf("%f, %f\n", test_acc, valid_acc);
-        //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
-        //if(valid_acc > .70) break;
-    }
-    end = clock();
-    FILE *fp = fopen("submission/out.txt", "w");
-    matrix test = csv_to_matrix("test.csv");
-    truth = pop_column(&test, 0);
-    for(i = 0; i < test.rows; ++i){
-        forward_network(net, test.vals[i],0, 0);
-        float *out = get_network_output(net);
-        if(fabs(out[0]) < .5) fprintf(fp, "0\n");
-        else fprintf(fp, "1\n");
-    }
-    fclose(fp);
-    printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
-}
-
-void test_split()
-{
-    data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
-    data *split = split_data(train, 0, 13);
-    printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
-}
-
-void test_im2row()
-{
-    int h = 20;
-    int w = 20;
-    int c = 3;
-    int stride = 1;
-    int size = 11;
-    image test = make_random_image(h,w,c);
-    int mc = 1;
-    int mw = ((h-size)/stride+1)*((w-size)/stride+1);
-    int mh = (size*size*c);
-    int msize = mc*mw*mh;
-    float *matrix = calloc(msize, sizeof(float));
-    int i;
-    for(i = 0; i < 1000; ++i){
-        //im2col_cpu(test.data,1,  c,  h,  w,  size,  stride, 0, matrix);
-        //image render = float_to_image(mh, mw, mc, matrix);
-    }
-}
-
-void flip_network()
-{
-    network net = parse_network_cfg("cfg/voc_imagenet_orig.cfg");
-    save_network(net, "cfg/voc_imagenet_rev.cfg");
-}
-
-
 void visualize_cat()
 {
     network net = parse_network_cfg("cfg/voc_imagenet.cfg");
@@ -754,8 +537,7 @@
     cvWaitKey(0);
 }
 
-
-void test_gpu_net()
+void test_correct_nist()
 {
     srand(222222);
     network net = parse_network_cfg("cfg/nist.cfg");
@@ -765,6 +547,7 @@
     translate_data_rows(test, -144);
     int count = 0;
     int iters = 1000/net.batch;
+
     while(++count <= 5){
         clock_t start = clock(), end;
         float loss = train_network_sgd(net, train, iters);
@@ -772,18 +555,18 @@
         float test_acc = network_accuracy(net, test);
         printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
     }
-#ifdef GPU
+
+    gpu_index = -1;
     count = 0;
     srand(222222);
     net = parse_network_cfg("cfg/nist.cfg");
     while(++count <= 5){
         clock_t start = clock(), end;
-        float loss = train_network_sgd_gpu(net, train, iters);
+        float loss = train_network_sgd(net, train, iters);
         end = clock();
         float test_acc = network_accuracy(net, test);
         printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
     }
-#endif
 }
 
 void test_correct_alexnet()
@@ -794,298 +577,139 @@
     printf("%d\n", plist->size);
     clock_t time;
     int count = 0;
+    network net;
 
     srand(222222);
-    network net = parse_network_cfg("cfg/alexnet.test");
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = 1000/net.batch+1;
-    imgs = 1;
+    net = parse_network_cfg("cfg/net.cfg");
+    int imgs = net.batch;
 
+    count = 0;
     while(++count <= 5){
         time=clock();
-        data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
-        //translate_data_rows(train, -144);
+        data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
         normalize_data_rows(train);
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
-        float loss = train_network_data_cpu(net, train, imgs);
+        float loss = train_network(net, train);
         printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
         free_data(train);
     }
-#ifdef GPU
+
+    gpu_index = -1;
     count = 0;
     srand(222222);
-    net = parse_network_cfg("cfg/alexnet.test");
+    net = parse_network_cfg("cfg/net.cfg");
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     while(++count <= 5){
         time=clock();
-        data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
-        //translate_data_rows(train, -144);
+        data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256);
         normalize_data_rows(train);
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
-        float loss = train_network_data_gpu(net, train, imgs);
+        float loss = train_network(net, train);
         printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
         free_data(train);
     }
-#endif
 }
 
-void test_server()
+void run_server()
 {
-    network net = parse_network_cfg("cfg/alexnet.test");
+    srand(time(0));
+    network net = parse_network_cfg("cfg/net.cfg");
+    set_batch_network(&net, 1);
     server_update(net);
 }
+
 void test_client()
 {
-    network net = parse_network_cfg("cfg/alexnet.test");
-    client_update(net);
+    network net = parse_network_cfg("cfg/alexnet.client");
+    clock_t time=clock();
+    client_update(net, "localhost");
+    printf("1\n");
+    client_update(net, "localhost");
+    printf("2\n");
+    client_update(net, "localhost");
+    printf("3\n");
+    printf("Transfered: %lf seconds\n", sec(clock()-time));
 }
 
-int main(int argc, char *argv[])
+void del_arg(int argc, char **argv, int index)
+{
+    int i;
+    for(i = index; i < argc-1; ++i) argv[i] = argv[i+1];
+}
+
+int find_arg(int argc, char* argv[], char *arg)
+{
+    int i;
+    for(i = 0; i < argc; ++i) if(0==strcmp(argv[i], arg)) {
+        del_arg(argc, argv, i);
+        return 1;
+    }
+    return 0;
+}
+
+int find_int_arg(int argc, char **argv, char *arg, int def)
+{
+    int i;
+    for(i = 0; i < argc-1; ++i){
+        if(0==strcmp(argv[i], arg)){
+            def = atoi(argv[i+1]);
+            del_arg(argc, argv, i);
+            del_arg(argc, argv, i);
+            break;
+        }
+    }
+    return def;
+}
+
+int main(int argc, char **argv)
 {
     if(argc < 2){
         fprintf(stderr, "usage: %s <function>\n", argv[0]);
         return 0;
     }
-    if(0==strcmp(argv[1], "train")) train_imagenet();
-    else if(0==strcmp(argv[1], "detection")) train_detection_net();
-    else if(0==strcmp(argv[1], "asirra")) train_asirra();
-    else if(0==strcmp(argv[1], "nist")) train_nist();
+    gpu_index = find_int_arg(argc, argv, "-i", 0);
+    if(find_arg(argc, argv, "-nogpu")) gpu_index = -1;
+
+#ifndef GPU
+    gpu_index = -1;
+#else
+    if(gpu_index >= 0){
+        cl_setup();
+    }
+#endif
+
+    if(0==strcmp(argv[1], "cifar")) train_cifar10();
     else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
+    else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist();
     else if(0==strcmp(argv[1], "test")) test_imagenet();
-    else if(0==strcmp(argv[1], "server")) test_server();
-    else if(0==strcmp(argv[1], "client")) test_client();
-    else if(0==strcmp(argv[1], "detect")) test_detection();
-    else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
-    else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
+    else if(0==strcmp(argv[1], "server")) run_server();
+
 #ifdef GPU
     else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
 #endif
+
+    else if(argc < 3){
+        fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]);
+        return 0;
+    }
+    else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]);
+    else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
+    else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]);
+    else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
+    else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]);
+    else if(0==strcmp(argv[1], "init")) test_init(argv[2]);
+    else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
+    else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
+    else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]);
+    else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]);
+    else if(argc < 4){
+        fprintf(stderr, "usage: %s <function> <filename> <filename>\n", argv[0]);
+        return 0;
+    }
+    else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]);
     fprintf(stderr, "Success!\n");
     return 0;
 }
 
-/*
-   void visualize_imagenet_topk(char *filename)
-   {
-   int i,j,k,l;
-   int topk = 10;
-   network net = parse_network_cfg("cfg/voc_imagenet.cfg");
-   list *plist = get_paths(filename);
-   node *n = plist->front;
-   int h = voc_size(1), w = voc_size(1);
-   int num = get_network_image(net).c;
-   image **vizs = calloc(num, sizeof(image*));
-   float **score = calloc(num, sizeof(float *));
-   for(i = 0; i < num; ++i){
-   vizs[i] = calloc(topk, sizeof(image));
-   for(j = 0; j < topk; ++j) vizs[i][j] = make_image(h,w,3);
-   score[i] = calloc(topk, sizeof(float));
-   }
-
-   int count = 0;
-   while(n){
-   ++count;
-   char *image_path = (char *)n->val;
-   image im = load_image(image_path, 0, 0);
-   n = n->next;
-   if(im.h < 200 || im.w < 200) continue;
-   printf("Processing %dx%d image\n", im.h, im.w);
-   resize_network(net, im.h, im.w, im.c);
-//scale_image(im, 1./255);
-translate_image(im, -144);
-forward_network(net, im.data, 0, 0);
-image out = get_network_image(net);
-
-int dh = (im.h - h)/(out.h-1);
-int dw = (im.w - w)/(out.w-1);
-//printf("%d %d\n", dh, dw);
-for(k = 0; k < out.c; ++k){
-float topv = 0;
-int topi = -1;
-int topj = -1;
-for(i = 0; i < out.h; ++i){
-for(j = 0; j < out.w; ++j){
-float val = get_pixel(out, i, j, k);
-if(val > topv){
-topv = val;
-topi = i;
-topj = j;
-}
-}
-}
-if(topv){
-image sub = get_sub_image(im, dh*topi, dw*topj, h, w);
-for(l = 0; l < topk; ++l){
-if(topv > score[k][l]){
-float swap = score[k][l];
-score[k][l] = topv;
-topv = swap;
-
-image swapi = vizs[k][l];
-vizs[k][l] = sub;
-sub = swapi;
-}
-}
-free_image(sub);
-}
-}
-free_image(im);
-if(count%50 == 0){
-image grid = grid_images(vizs, num, topk);
-//show_image(grid, "IMAGENET Visualization");
-save_image(grid, "IMAGENET Grid Single Nonorm");
-free_image(grid);
-}
-}
-//cvWaitKey(0);
-}
-
-void visualize_imagenet_features(char *filename)
-{
-    int i,j,k;
-    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
-    list *plist = get_paths(filename);
-    node *n = plist->front;
-    int h = voc_size(1), w = voc_size(1);
-    int num = get_network_image(net).c;
-    image *vizs = calloc(num, sizeof(image));
-    for(i = 0; i < num; ++i) vizs[i] = make_image(h, w, 3);
-    while(n){
-        char *image_path = (char *)n->val;
-        image im = load_image(image_path, 0, 0);
-        printf("Processing %dx%d image\n", im.h, im.w);
-        resize_network(net, im.h, im.w, im.c);
-        forward_network(net, im.data, 0, 0);
-        image out = get_network_image(net);
-
-        int dh = (im.h - h)/h;
-        int dw = (im.w - w)/w;
-        for(i = 0; i < out.h; ++i){
-            for(j = 0; j < out.w; ++j){
-                image sub = get_sub_image(im, dh*i, dw*j, h, w);
-                for(k = 0; k < out.c; ++k){
-                    float val = get_pixel(out, i, j, k);
-                    //printf("%f, ", val);
-                    image sub_c = copy_image(sub);
-                    scale_image(sub_c, val);
-                    add_into_image(sub_c, vizs[k], 0, 0);
-                    free_image(sub_c);
-                }
-                free_image(sub);
-            }
-        }
-        //printf("\n");
-        show_images(vizs, 10, "IMAGENET Visualization");
-        cvWaitKey(1000);
-        n = n->next;
-    }
-    cvWaitKey(0);
-}
-void features_VOC_image(char *image_file, char *image_dir, char *out_dir, int flip, int interval)
-{
-    int i,j;
-    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
-    char image_path[1024];
-    sprintf(image_path, "%s/%s",image_dir, image_file);
-    char out_path[1024];
-    if (flip)sprintf(out_path, "%s%d/%s_r.txt",out_dir, interval, image_file);
-    else sprintf(out_path, "%s%d/%s.txt",out_dir, interval, image_file);
-    printf("%s\n", image_file);
-
-    IplImage* src = 0;
-    if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
-    if(flip)cvFlip(src, 0, 1);
-    int w = src->width;
-    int h = src->height;
-    int sbin = 8;
-    double scale = pow(2., 1./interval);
-    int m = (w<h)?w:h;
-    int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
-    if(max_scale < interval) error("max_scale must be >= interval");
-    image *ims = calloc(max_scale+interval, sizeof(image));
-
-    for(i = 0; i < interval; ++i){
-        double factor = 1./pow(scale, i);
-        double ih =  round(h*factor);
-        double iw =  round(w*factor);
-        int ex_h = round(ih/4.) - 2;
-        int ex_w = round(iw/4.) - 2;
-        ims[i] = features_output_size(net, src, ex_h, ex_w);
-
-        ih =  round(h*factor);
-        iw =  round(w*factor);
-        ex_h = round(ih/8.) - 2;
-        ex_w = round(iw/8.) - 2;
-        ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
-        for(j = i+interval; j < max_scale; j += interval){
-            factor /= 2.;
-            ih =  round(h*factor);
-            iw =  round(w*factor);
-            ex_h = round(ih/8.) - 2;
-            ex_w = round(iw/8.) - 2;
-            ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
-        }
-    }
-    FILE *fp = fopen(out_path, "w");
-    if(fp == 0) file_error(out_path);
-    for(i = 0; i < max_scale+interval; ++i){
-        image out = ims[i];
-        fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
-        for(j = 0; j < out.c*out.h*out.w; ++j){
-            if(j != 0)fprintf(fp, ",");
-            float o = out.data[j];
-            if(o < 0) o = 0;
-            fprintf(fp, "%g", o);
-        }
-        fprintf(fp, "\n");
-        free_image(out);
-    }
-    free(ims);
-    fclose(fp);
-    cvReleaseImage(&src);
-}
-
-void test_distribution()
-{
-    IplImage* img = 0;
-    if( (img = cvLoadImage("im_small.jpg",-1)) == 0 ) file_error("im_small.jpg");
-    network net = parse_network_cfg("cfg/voc_features.cfg");
-    int h = img->height/8-2;
-    int w = img->width/8-2;
-    image out = features_output_size(net, img, h, w);
-    int c = out.c;
-    out.c = 1;
-    show_image(out, "output");
-    out.c = c;
-    image input = ipl_to_image(img);
-    show_image(input, "input");
-    CvScalar s;
-    int i,j;
-    image affects = make_image(input.h, input.w, 1);
-    int count = 0;
-    for(i = 0; i<img->height; i += 1){
-        for(j = 0; j < img->width; j += 1){
-            IplImage *copy = cvCloneImage(img);
-            s=cvGet2D(copy,i,j); // get the (i,j) pixel value
-            printf("%d/%d\n", count++, img->height*img->width);
-            s.val[0]=0;
-            s.val[1]=0;
-            s.val[2]=0;
-            cvSet2D(copy,i,j,s); // set the (i,j) pixel value
-            image mod = features_output_size(net, copy, h, w);
-            image dist = image_distance(out, mod);
-            show_image(affects, "affects");
-            cvWaitKey(1);
-            cvReleaseImage(&copy);
-            //affects.data[i*affects.w + j] += dist.data[3*dist.w+5];
-            affects.data[i*affects.w + j] += dist.data[1*dist.w+1];
-            free_image(mod);
-            free_image(dist);
-        }
-    }
-    show_image(affects, "Origins");
-    cvWaitKey(0);
-    cvWaitKey(0);
-}
-*/

--
Gitblit v1.10.0