From aa5996d58e68edfbefe51061856aecd549dd09c4 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 13 Jan 2015 01:27:08 +0000
Subject: [PATCH] Faster

---
 src/cnn.c |  167 ++++++++++++++++++++++++++++++++++++++++++-------------
 1 files changed, 127 insertions(+), 40 deletions(-)

diff --git a/src/cnn.c b/src/cnn.c
index 790e311..e587a1b 100644
--- a/src/cnn.c
+++ b/src/cnn.c
@@ -31,21 +31,23 @@
     save_network(net, "cfg/trained_imagenet_smaller.cfg");
 }
 
+#define AMNT 3
 void draw_detection(image im, float *box, int side)
 {
     int j;
     int r, c;
-    float amount[5] = {0,0,0,0,0};
+    float amount[AMNT] = {0};
     for(r = 0; r < side*side; ++r){
-        for(j = 0; j < 5; ++j){
-            if(box[r*5] > amount[j]) {
-                amount[j] = box[r*5];
-                break;
+        float val = box[r*5];
+        for(j = 0; j < AMNT; ++j){
+            if(val > amount[j]) {
+                float swap = val;
+                val = amount[j];
+                amount[j] = swap;
             }
         }
     }
-    float smallest = amount[0];
-    for(j = 1; j < 5; ++j) if(amount[j] < smallest) smallest = amount[j];
+    float smallest = amount[AMNT-1];
 
     for(r = 0; r < side; ++r){
         for(c = 0; c < side; ++c){
@@ -57,9 +59,9 @@
                 int x = c*d+box[j+2]*d;
                 int h = box[j+3]*256;
                 int w = box[j+4]*256;
-                printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
-                printf("%d %d %d %d\n", x, y, w, h);
-                printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
+                //printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
+                //printf("%d %d %d %d\n", x, y, w, h);
+                //printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
                 draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2);
             }
         }
@@ -69,11 +71,11 @@
 }
 
 
-void train_detection_net()
+void train_detection_net(char *cfgfile)
 {
     float avg_loss = 1;
     //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
-    network net = parse_network_cfg("cfg/detnet.cfg");
+    network net = parse_network_cfg(cfgfile);
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 1024;
     srand(time(0));
@@ -82,14 +84,20 @@
     list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt");
     char **paths = (char **)list_to_array(plist);
     printf("%d\n", plist->size);
+    data train, buffer;
+    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
     clock_t time;
     while(1){
         i += 1;
         time=clock();
-        data train = load_data_detection_jitter_random(imgs, paths, plist->size, 256, 256, 7, 7, 256);
-        /*
-        image im = float_to_image(224, 224, 3, train.X.vals[0]);
-        draw_detection(im, train.y.vals[0], 7);
+        pthread_join(load_thread, 0);
+        train = buffer;
+        load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
+        //data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256);
+
+/*
+        image im = float_to_image(224, 224, 3, train.X.vals[923]);
+        draw_detection(im, train.y.vals[923], 7);
         */
 
         normalize_data_rows(train);
@@ -98,7 +106,7 @@
         float loss = train_network(net, train);
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch);
-        if(i%10==0){
+        if(i%100==0){
             char buff[256];
             sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i);
             save_network(net, buff);
@@ -107,6 +115,57 @@
     }
 }
 
+void validate_detection_net(char *cfgfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    list *plist = get_paths("/home/pjreddie/data/imagenet/detection.val");
+    char **paths = (char **)list_to_array(plist);
+
+    int m = plist->size;
+    int i = 0;
+    int splits = 50;
+    int num = (i+1)*m/splits - i*m/splits;
+
+    fprintf(stderr, "%d\n", m);
+    data val, buffer;
+    pthread_t load_thread = load_data_thread(paths, num, 0, 0, 245, 224, 224, &buffer);
+    clock_t time;
+    for(i = 1; i <= splits; ++i){
+        time=clock();
+        pthread_join(load_thread, 0);
+        val = buffer;
+        normalize_data_rows(val);
+
+        num = (i+1)*m/splits - i*m/splits;
+        char **part = paths+(i*m/splits);
+        if(i != splits) load_thread = load_data_thread(part, num, 0, 0, 245, 224, 224, &buffer);
+ 
+        fprintf(stderr, "Loaded: %lf seconds\n", sec(clock()-time));
+        matrix pred = network_predict_data(net, val);
+        int j, k;
+        for(j = 0; j < pred.rows; ++j){
+            for(k = 0; k < pred.cols; k += 5){
+                if (pred.vals[j][k] > .005){
+                    int index = k/5; 
+                    int r = index/7;
+                    int c = index%7;
+                    float y = (32.*(r + pred.vals[j][k+1]))/224.;
+                    float x = (32.*(c + pred.vals[j][k+2]))/224.;
+                    float h = (256.*(pred.vals[j][k+3]))/224.;
+                    float w = (256.*(pred.vals[j][k+4]))/224.;
+                    printf("%d %f %f %f %f %f\n", (i-1)*m/splits + j + 1, pred.vals[j][k], y, x, h, w);
+                }
+            }
+        }
+
+        time=clock();
+        free_data(val);
+    }
+}
+
 void train_imagenet_distributed(char *address)
 {
     float avg_loss = 1;
@@ -151,10 +210,10 @@
     //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
     srand(time(0));
     network net = parse_network_cfg(cfgfile);
-    set_learning_network(&net, .000001, .9, .0005);
+    set_learning_network(&net, net.learning_rate, 0, net.decay);
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 1024;
-    int i = 20590;
+    int i = 77700;
     char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
     list *plist = get_paths("/data/imagenet/cls.train.list");
     char **paths = (char **)list_to_array(plist);
@@ -169,7 +228,9 @@
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
-        normalize_data_rows(train);
+        //normalize_data_rows(train);
+        translate_data_rows(train, -128);
+        scale_data_rows(train, 1./128);
         load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
@@ -177,7 +238,7 @@
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
         free_data(train);
-        if(i%10==0){
+        if(i%100==0){
             char buff[256];
             sprintf(buff, "/home/pjreddie/imagenet_backup/net_%d.cfg", i);
             save_network(net, buff);
@@ -257,8 +318,10 @@
     int i = 0;
     char *filename = "data/test.jpg";
 
-    image im = load_image_color(filename, 224, 224);
-    z_normalize_image(im);
+    image im = load_image_color(filename, 256, 256);
+    //z_normalize_image(im);
+    translate_image(im, -128);
+    scale_image(im, 1/128.);
     float *X = im.data;
     forward_network(net, X, 0, 1);
     for(i = 0; i < net.n; ++i){
@@ -344,9 +407,9 @@
         if(count%10 == 0){
             float test_acc = network_accuracy(net, test);
             printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
-            char buff[256];
-            sprintf(buff, "unikitty/cifar10_%d.cfg", count);
-            save_network(net, buff);
+            //char buff[256];
+            //sprintf(buff, "unikitty/cifar10_%d.cfg", count);
+            //save_network(net, buff);
         }else{
             printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
         }
@@ -355,6 +418,16 @@
     free_data(train);
 }
 
+void compare_nist(char *p1,char *p2)
+{
+    srand(222222);
+    network n1 = parse_network_cfg(p1);
+    network n2 = parse_network_cfg(p2);
+    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+    normalize_data_rows(test);
+    compare_networks(n1, n2, test);
+}
+
 void test_nist(char *path)
 {
     srand(222222);
@@ -367,24 +440,30 @@
     printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
 }
 
-void train_nist()
+void train_nist(char *cfgfile)
 {
     srand(222222);
-    network net = parse_network_cfg("cfg/nist.cfg");
+    // srand(time(0));
     data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
     data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
-    normalize_data_rows(train);
-    normalize_data_rows(test);
+    network net = parse_network_cfg(cfgfile);
     int count = 0;
-    int iters = 60000/net.batch + 1;
-    while(++count <= 2000){
+    int iters = 6000/net.batch + 1;
+    while(++count <= 100){
         clock_t start = clock(), end;
+        normalize_data_rows(train);
+        normalize_data_rows(test);
         float loss = train_network_sgd(net, train, iters);
-        end = clock();
         float test_acc = 0;
         if(count%1 == 0) test_acc = network_accuracy(net, test);
+        end = clock();
         printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
     }
+    free_data(train);
+    free_data(test);
+    char buff[256];
+    sprintf(buff, "%s.trained", cfgfile);
+    save_network(net, buff);
 }
 
 void train_nist_distributed(char *address)
@@ -458,7 +537,7 @@
     cvWaitKey(0);
 }
 
-void test_gpu_net()
+void test_correct_nist()
 {
     srand(222222);
     network net = parse_network_cfg("cfg/nist.cfg");
@@ -499,11 +578,12 @@
     clock_t time;
     int count = 0;
     network net;
+
+    srand(222222);
+    net = parse_network_cfg("cfg/net.cfg");
     int imgs = net.batch;
 
     count = 0;
-    srand(222222);
-    net = parse_network_cfg("cfg/net.cfg");
     while(++count <= 5){
         time=clock();
         data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
@@ -562,7 +642,7 @@
 int find_arg(int argc, char* argv[], char *arg)
 {
     int i;
-    for(i = 0; i < argc-1; ++i) if(0==strcmp(argv[i], arg)) {
+    for(i = 0; i < argc; ++i) if(0==strcmp(argv[i], arg)) {
         del_arg(argc, argv, i);
         return 1;
     }
@@ -600,10 +680,9 @@
     }
 #endif
 
-    if(0==strcmp(argv[1], "detection")) train_detection_net();
-    else if(0==strcmp(argv[1], "nist")) train_nist();
-    else if(0==strcmp(argv[1], "cifar")) train_cifar10();
+    if(0==strcmp(argv[1], "cifar")) train_cifar10();
     else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
+    else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist();
     else if(0==strcmp(argv[1], "test")) test_imagenet();
     else if(0==strcmp(argv[1], "server")) run_server();
 
@@ -615,6 +694,8 @@
         fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]);
         return 0;
     }
+    else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]);
+    else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
     else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]);
     else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
     else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]);
@@ -622,6 +703,12 @@
     else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
     else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
     else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]);
+    else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]);
+    else if(argc < 4){
+        fprintf(stderr, "usage: %s <function> <filename> <filename>\n", argv[0]);
+        return 0;
+    }
+    else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]);
     fprintf(stderr, "Success!\n");
     return 0;
 }

--
Gitblit v1.10.0