From aa5996d58e68edfbefe51061856aecd549dd09c4 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 13 Jan 2015 01:27:08 +0000
Subject: [PATCH] Faster

---
 src/cnn.c | 1281 +++++++++++++++++++++++++++-------------------------------
 1 files changed, 595 insertions(+), 686 deletions(-)

diff --git a/src/cnn.c b/src/cnn.c
index f866194..e587a1b 100644
--- a/src/cnn.c
+++ b/src/cnn.c
@@ -8,6 +8,8 @@
 #include "matrix.h"
 #include "utils.h"
 #include "mini_blas.h"
+#include "matrix.h"
+#include "server.h"
 
 #include <time.h>
 #include <stdlib.h>
@@ -16,309 +18,474 @@
 #define _GNU_SOURCE
 #include <fenv.h>
 
-void test_convolve()
-{
-	image dog = load_image("dog.jpg",300,400);
-	printf("dog channels %d\n", dog.c);
-	image kernel = make_random_image(3,3,dog.c);
-	image edge = make_image(dog.h, dog.w, 1);
-	int i;
-	clock_t start = clock(), end;
-	for(i = 0; i < 1000; ++i){
-		convolve(dog, kernel, 1, 0, edge, 1);
-	}
-	end = clock();
-	printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
-	show_image_layers(edge, "Test Convolve");
-}
-
-void test_convolve_matrix()
-{
-	image dog = load_image("dog.jpg",300,400);
-	printf("dog channels %d\n", dog.c);
-
-	int size = 11;
-	int stride = 4;
-	int n = 40;
-	float *filters = make_random_image(size, size, dog.c*n).data;
-
-	int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
-	int mh = (size*size*dog.c);
-	float *matrix = calloc(mh*mw, sizeof(float));
-
-	image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
-
-	int i;
-	clock_t start = clock(), end;
-	for(i = 0; i < 1000; ++i){
-		im2col_cpu(dog.data,1, dog.c,  dog.h,  dog.w,  size,  stride, 0, matrix);
-		gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
-	}
-	end = clock();
-	printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
-	show_image_layers(edge, "Test Convolve");
-	cvWaitKey(0);
-}
-
-void test_color()
-{
-	image dog = load_image("test_color.png", 300, 400);
-	show_image_layers(dog, "Test Color");
-}
-
-void verify_convolutional_layer()
-{
-	srand(0);
-	int i;
-	int n = 1;
-	int stride = 1;
-	int size = 3;
-	float eps = .00000001;
-	image test = make_random_image(5,5, 1);
-	convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, 0, RELU,0,0,0);
-	image out = get_convolutional_image(layer);
-	float **jacobian = calloc(test.h*test.w*test.c, sizeof(float));
-
-	forward_convolutional_layer(layer, test.data);
-	image base = copy_image(out);
-
-	for(i = 0; i < test.h*test.w*test.c; ++i){
-		test.data[i] += eps;
-		forward_convolutional_layer(layer, test.data);
-		image partial = copy_image(out);
-		subtract_image(partial, base);
-		scale_image(partial, 1/eps);
-		jacobian[i] = partial.data;
-		test.data[i] -= eps;
-	}
-	float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float));
-	image in_delta = make_image(test.h, test.w, test.c);
-	image out_delta = get_convolutional_delta(layer);
-	for(i = 0; i < out.h*out.w*out.c; ++i){
-		out_delta.data[i] = 1;
-		backward_convolutional_layer(layer, in_delta.data);
-		image partial = copy_image(in_delta);
-		jacobian2[i] = partial.data;
-		out_delta.data[i] = 0;
-	}
-	int j;
-	float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
-	float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
-	for(i = 0; i < test.h*test.w*test.c; ++i){
-		for(j =0 ; j < out.h*out.w*out.c; ++j){
-			j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
-			j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
-			printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
-		}
-	}
-
-
-	image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
-	image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
-	printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
-	show_image(mj1, "forward jacobian");
-	show_image(mj2, "backward jacobian");
-}
-
 void test_load()
 {
-	image dog = load_image("dog.jpg", 300, 400);
-	show_image(dog, "Test Load");
-	show_image_layers(dog, "Test Load");
-}
-void test_upsample()
-{
-	image dog = load_image("dog.jpg", 300, 400);
-	int n = 3;
-	image up = make_image(n*dog.h, n*dog.w, dog.c);
-	upsample_image(dog, n, up);
-	show_image(up, "Test Upsample");
-	show_image_layers(up, "Test Upsample");
-}
-
-void test_rotate()
-{
-	int i;
-	image dog = load_image("dog.jpg",300,400);
-	clock_t start = clock(), end;
-	for(i = 0; i < 1001; ++i){
-		rotate_image(dog);
-	}
-	end = clock();
-	printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
-	show_image(dog, "Test Rotate");
-
-	image random = make_random_image(3,3,3);
-	show_image(random, "Test Rotate Random");
-	rotate_image(random);
-	show_image(random, "Test Rotate Random");
-	rotate_image(random);
-	show_image(random, "Test Rotate Random");
+    image dog = load_image("dog.jpg", 300, 400);
+    show_image(dog, "Test Load");
+    show_image_layers(dog, "Test Load");
 }
 
 void test_parser()
 {
-	network net = parse_network_cfg("cfg/test_parser.cfg");
-    save_network(net, "cfg/test_parser_1.cfg");
-	network net2 = parse_network_cfg("cfg/test_parser_1.cfg");
-    save_network(net2, "cfg/test_parser_2.cfg");
+    network net = parse_network_cfg("cfg/trained_imagenet.cfg");
+    save_network(net, "cfg/trained_imagenet_smaller.cfg");
 }
 
-void test_data()
+#define AMNT 3
+void draw_detection(image im, float *box, int side)
 {
-	char *labels[] = {"cat","dog"};
-	data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400);
-	free_data(train);
+    int j;
+    int r, c;
+    float amount[AMNT] = {0};
+    for(r = 0; r < side*side; ++r){
+        float val = box[r*5];
+        for(j = 0; j < AMNT; ++j){
+            if(val > amount[j]) {
+                float swap = val;
+                val = amount[j];
+                amount[j] = swap;
+            }
+        }
+    }
+    float smallest = amount[AMNT-1];
+
+    for(r = 0; r < side; ++r){
+        for(c = 0; c < side; ++c){
+            j = (r*side + c) * 5;
+            printf("Prob: %f\n", box[j]);
+            if(box[j] >= smallest){
+                int d = im.w/side;
+                int y = r*d+box[j+1]*d;
+                int x = c*d+box[j+2]*d;
+                int h = box[j+3]*256;
+                int w = box[j+4]*256;
+                //printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
+                //printf("%d %d %d %d\n", x, y, w, h);
+                //printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
+                draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2);
+            }
+        }
+    }
+    show_image(im, "box");
+    cvWaitKey(0);
 }
 
-void train_full()
+
+void train_detection_net(char *cfgfile)
 {
-	network net = parse_network_cfg("cfg/imagenet.cfg");
-	srand(2222222);
-	int i = 0;
-	char *labels[] = {"cat","dog"};
-	float lr = .00001;
-	float momentum = .9;
-	float decay = 0.01;
-	while(1){
-		i += 1000;
-		data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256);
-		//image im = float_to_image(256, 256, 3,train.X.vals[0]);
-		//visualize_network(net);
-		//cvWaitKey(100);
-		//show_image(im, "input");
-		//cvWaitKey(100);
-		//scale_data_rows(train, 1./255.);
-		normalize_data_rows(train);
-		clock_t start = clock(), end;
-		float loss = train_network_sgd(net, train, 1000);
-		end = clock();
-		printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
-		free_data(train);
-		if(i%10000==0){
-			char buff[256];
-			sprintf(buff, "cfg/assira_backup_%d.cfg", i);
-			save_network(net, buff);
-		}
-		//lr *= .99;
-	}
+    float avg_loss = 1;
+    //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
+    network net = parse_network_cfg(cfgfile);
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = 1024;
+    srand(time(0));
+    //srand(23410);
+    int i = 0;
+    list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt");
+    char **paths = (char **)list_to_array(plist);
+    printf("%d\n", plist->size);
+    data train, buffer;
+    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
+    clock_t time;
+    while(1){
+        i += 1;
+        time=clock();
+        pthread_join(load_thread, 0);
+        train = buffer;
+        load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
+        //data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256);
+
+/*
+        image im = float_to_image(224, 224, 3, train.X.vals[923]);
+        draw_detection(im, train.y.vals[923], 7);
+        */
+
+        normalize_data_rows(train);
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+        time=clock();
+        float loss = train_network(net, train);
+        avg_loss = avg_loss*.9 + loss*.1;
+        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch);
+        if(i%100==0){
+            char buff[256];
+            sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i);
+            save_network(net, buff);
+        }
+        free_data(train);
+    }
 }
 
-void test_visualize()
+void validate_detection_net(char *cfgfile)
 {
-	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
-	srand(2222222);
-	visualize_network(net);
-	cvWaitKey(0);
+    network net = parse_network_cfg(cfgfile);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    list *plist = get_paths("/home/pjreddie/data/imagenet/detection.val");
+    char **paths = (char **)list_to_array(plist);
+
+    int m = plist->size;
+    int i = 0;
+    int splits = 50;
+    int num = (i+1)*m/splits - i*m/splits;
+
+    fprintf(stderr, "%d\n", m);
+    data val, buffer;
+    pthread_t load_thread = load_data_thread(paths, num, 0, 0, 245, 224, 224, &buffer);
+    clock_t time;
+    for(i = 1; i <= splits; ++i){
+        time=clock();
+        pthread_join(load_thread, 0);
+        val = buffer;
+        normalize_data_rows(val);
+
+        num = (i+1)*m/splits - i*m/splits;
+        char **part = paths+(i*m/splits);
+        if(i != splits) load_thread = load_data_thread(part, num, 0, 0, 245, 224, 224, &buffer);
+ 
+        fprintf(stderr, "Loaded: %lf seconds\n", sec(clock()-time));
+        matrix pred = network_predict_data(net, val);
+        int j, k;
+        for(j = 0; j < pred.rows; ++j){
+            for(k = 0; k < pred.cols; k += 5){
+                if (pred.vals[j][k] > .005){
+                    int index = k/5; 
+                    int r = index/7;
+                    int c = index%7;
+                    float y = (32.*(r + pred.vals[j][k+1]))/224.;
+                    float x = (32.*(c + pred.vals[j][k+2]))/224.;
+                    float h = (256.*(pred.vals[j][k+3]))/224.;
+                    float w = (256.*(pred.vals[j][k+4]))/224.;
+                    printf("%d %f %f %f %f %f\n", (i-1)*m/splits + j + 1, pred.vals[j][k], y, x, h, w);
+                }
+            }
+        }
+
+        time=clock();
+        free_data(val);
+    }
 }
-void test_full()
+
+void train_imagenet_distributed(char *address)
 {
-	network net = parse_network_cfg("cfg/backup_1300.cfg");
-	srand(2222222);
-	int i,j;
-	int total = 100;
-	char *labels[] = {"cat","dog"};
-	FILE *fp = fopen("preds.txt","w");
-	for(i = 0; i < total; ++i){
-		visualize_network(net);
-		cvWaitKey(100);
-		data test = load_data_image_pathfile_part("images/assira/test.list", i, total, labels, 2, 256, 256);
-		image im = float_to_image(256, 256, 3,test.X.vals[0]);
-		show_image(im, "input");
-		cvWaitKey(100);
-		normalize_data_rows(test);
-		for(j = 0; j < test.X.rows; ++j){
-			float *x = test.X.vals[j];
-			forward_network(net, x, 0);
-			int class = get_predicted_class_network(net);
-			fprintf(fp, "%d\n", class);
-		}
-		free_data(test);
-	}
-	fclose(fp);
+    float avg_loss = 1;
+    srand(time(0));
+    network net = parse_network_cfg("cfg/net.cfg");
+    set_learning_network(&net, 0, 1, 0);
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = net.batch;
+    int i = 0;
+    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+    list *plist = get_paths("/data/imagenet/cls.train.list");
+    char **paths = (char **)list_to_array(plist);
+    printf("%d\n", plist->size);
+    clock_t time;
+    data train, buffer;
+    pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
+    while(1){
+        i += 1;
+
+        time=clock();
+        client_update(net, address);
+        printf("Updated: %lf seconds\n", sec(clock()-time));
+
+        time=clock();
+        pthread_join(load_thread, 0);
+        train = buffer;
+        normalize_data_rows(train);
+        load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+        time=clock();
+
+        float loss = train_network(net, train);
+        avg_loss = avg_loss*.9 + loss*.1;
+        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
+        free_data(train);
+    }
+}
+
+void train_imagenet(char *cfgfile)
+{
+    float avg_loss = 1;
+    //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
+    srand(time(0));
+    network net = parse_network_cfg(cfgfile);
+    set_learning_network(&net, net.learning_rate, 0, net.decay);
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = 1024;
+    int i = 77700;
+    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+    list *plist = get_paths("/data/imagenet/cls.train.list");
+    char **paths = (char **)list_to_array(plist);
+    printf("%d\n", plist->size);
+    clock_t time;
+    pthread_t load_thread;
+    data train;
+    data buffer;
+    load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
+    while(1){
+        i += 1;
+        time=clock();
+        pthread_join(load_thread, 0);
+        train = buffer;
+        //normalize_data_rows(train);
+        translate_data_rows(train, -128);
+        scale_data_rows(train, 1./128);
+        load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+        time=clock();
+        float loss = train_network(net, train);
+        avg_loss = avg_loss*.9 + loss*.1;
+        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
+        free_data(train);
+        if(i%100==0){
+            char buff[256];
+            sprintf(buff, "/home/pjreddie/imagenet_backup/net_%d.cfg", i);
+            save_network(net, buff);
+        }
+    }
+}
+
+void validate_imagenet(char *filename)
+{
+    int i = 0;
+    network net = parse_network_cfg(filename);
+    srand(time(0));
+
+    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
+
+    list *plist = get_paths("/home/pjreddie/data/imagenet/cls.val.list");
+    char **paths = (char **)list_to_array(plist);
+    int m = plist->size;
+    free_list(plist);
+
+    clock_t time;
+    float avg_acc = 0;
+    float avg_top5 = 0;
+    int splits = 50;
+    int num = (i+1)*m/splits - i*m/splits;
+
+    data val, buffer;
+    pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
+    for(i = 1; i <= splits; ++i){
+        time=clock();
+
+        pthread_join(load_thread, 0);
+        val = buffer;
+        normalize_data_rows(val);
+
+        num = (i+1)*m/splits - i*m/splits;
+        char **part = paths+(i*m/splits);
+        if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
+        printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
+
+        time=clock();
+        float *acc = network_accuracies(net, val);
+        avg_acc += acc[0];
+        avg_top5 += acc[1];
+        printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
+        free_data(val);
+    }
+}
+
+void test_detection(char *cfgfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    set_batch_network(&net, 1);
+    srand(2222222);
+    clock_t time;
+    char filename[256];
+    while(1){
+        fgets(filename, 256, stdin);
+        strtok(filename, "\n");
+        image im = load_image_color(filename, 224, 224);
+        z_normalize_image(im);
+        printf("%d %d %d\n", im.h, im.w, im.c);
+        float *X = im.data;
+        time=clock();
+        float *predictions = network_predict(net, X);
+        printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
+        draw_detection(im, predictions, 7);
+        free_image(im);
+    }
+}
+
+void test_init(char *cfgfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    set_batch_network(&net, 1);
+    srand(2222222);
+    int i = 0;
+    char *filename = "data/test.jpg";
+
+    image im = load_image_color(filename, 256, 256);
+    //z_normalize_image(im);
+    translate_image(im, -128);
+    scale_image(im, 1/128.);
+    float *X = im.data;
+    forward_network(net, X, 0, 1);
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            image output = get_convolutional_image(layer);
+            int size = output.h*output.w*output.c;
+            float v = variance_array(layer.output, size);
+            float m = mean_array(layer.output, size);
+            printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v);
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            int size = layer.outputs;
+            float v = variance_array(layer.output, size);
+            float m = mean_array(layer.output, size);
+            printf("%d: Connected, mean: %f, variance %f\n", i, m, v);
+        }
+    }
+    free_image(im);
+}
+
+void test_imagenet()
+{
+    network net = parse_network_cfg("cfg/imagenet_test.cfg");
+    //imgs=1;
+    srand(2222222);
+    int i = 0;
+    char **names = get_labels("cfg/shortnames.txt");
+    clock_t time;
+    char filename[256];
+    int indexes[10];
+    while(1){
+        fgets(filename, 256, stdin);
+        strtok(filename, "\n");
+        image im = load_image_color(filename, 256, 256);
+        z_normalize_image(im);
+        printf("%d %d %d\n", im.h, im.w, im.c);
+        float *X = im.data;
+        time=clock();
+        float *predictions = network_predict(net, X);
+        top_predictions(net, 10, indexes);
+        printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
+        for(i = 0; i < 10; ++i){
+            int index = indexes[i];
+            printf("%s: %f\n", names[index], predictions[index]);
+        }
+        free_image(im);
+    }
+}
+
+void test_visualize(char *filename)
+{
+    network net = parse_network_cfg(filename);
+    visualize_network(net);
+    cvWaitKey(0);
 }
 
 void test_cifar10()
 {
-	srand(222222);
+    network net = parse_network_cfg("cfg/cifar10_part5.cfg");
+    data test = load_cifar10_data("data/cifar10/test_batch.bin");
+    clock_t start = clock(), end;
+    float test_acc = network_accuracy(net, test);
+    end = clock();
+    printf("%f in %f Sec\n", test_acc, (float)(end-start)/CLOCKS_PER_SEC);
+    visualize_network(net);
+    cvWaitKey(0);
+}
+
+void train_cifar10()
+{
+    srand(555555);
     network net = parse_network_cfg("cfg/cifar10.cfg");
-    //data test = load_cifar10_data("data/cifar10/test_batch.bin");
+    data test = load_cifar10_data("data/cifar10/test_batch.bin");
     int count = 0;
     int iters = 10000/net.batch;
     data train = load_all_cifar10();
     while(++count <= 10000){
-        clock_t start = clock(), end;
+        clock_t time = clock();
         float loss = train_network_sgd(net, train, iters);
-        end = clock();
-        //visualize_network(net);
-        //cvWaitKey(1000);
 
-        //float test_acc = network_accuracy(net, test);
-        //printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
-        printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+        if(count%10 == 0){
+            float test_acc = network_accuracy(net, test);
+            printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
+            //char buff[256];
+            //sprintf(buff, "unikitty/cifar10_%d.cfg", count);
+            //save_network(net, buff);
+        }else{
+            printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
+        }
+
     }
     free_data(train);
 }
 
-void test_vince()
-{
-    network net = parse_network_cfg("cfg/vince.cfg");
-    data train = load_categorical_data_csv("images/vince.txt", 144, 2);
-    normalize_data_rows(train);
-
-    int count = 0;
-    //float lr = .00005;
-    //float momentum = .9;
-    //float decay = 0.0001;
-    //decay = 0;
-    int batch = 10000;
-    while(++count <= 10000){
-        float loss = train_network_sgd(net, train, batch);
-        printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
-    }
-}
-
-void test_nist_single()
+void compare_nist(char *p1,char *p2)
 {
     srand(222222);
-    network net = parse_network_cfg("cfg/nist.cfg");
-    data train = load_categorical_data_csv("data/mnist/mnist_tiny.csv", 0, 10);
-    normalize_data_rows(train);
-    float loss = train_network_sgd(net, train, 5);
-    printf("Loss: %f, LR: %f, Momentum: %f, Decay: %f\n", loss, net.learning_rate, net.momentum, net.decay);
-
+    network n1 = parse_network_cfg(p1);
+    network n2 = parse_network_cfg(p2);
+    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+    normalize_data_rows(test);
+    compare_networks(n1, n2, test);
 }
 
-void test_nist()
+void test_nist(char *path)
 {
     srand(222222);
-    network net = parse_network_cfg("cfg/nist.cfg");
+    network net = parse_network_cfg(path);
+    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+    normalize_data_rows(test);
+    clock_t start = clock(), end;
+    float test_acc = network_accuracy(net, test);
+    end = clock();
+    printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
+}
+
+void train_nist(char *cfgfile)
+{
+    srand(222222);
+    // srand(time(0));
     data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
     data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
-	translate_data_rows(train, -144);
-	scale_data_rows(train, 1./128);
-	translate_data_rows(test, -144);
-	scale_data_rows(test, 1./128);
-    //randomize_data(train);
+    network net = parse_network_cfg(cfgfile);
     int count = 0;
-    //clock_t start = clock(), end;
-    int iters = 10000/net.batch;
+    int iters = 6000/net.batch + 1;
     while(++count <= 100){
         clock_t start = clock(), end;
+        normalize_data_rows(train);
+        normalize_data_rows(test);
         float loss = train_network_sgd(net, train, iters);
+        float test_acc = 0;
+        if(count%1 == 0) test_acc = network_accuracy(net, test);
         end = clock();
-        float test_acc = network_accuracy(net, test);
-        //float test_acc = 0;
-        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
-        //save_network(net, "cfg/nist_basic_trained.cfg");
-
-        //printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay);
-        //end = clock();
-        //printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
-        //start=end;
-        //lr *= .5;
+        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
     }
-    //save_network(net, "cfg/nist_basic_trained.cfg");
+    free_data(train);
+    free_data(test);
+    char buff[256];
+    sprintf(buff, "%s.trained", cfgfile);
+    save_network(net, buff);
+}
+
+void train_nist_distributed(char *address)
+{
+    srand(time(0));
+    network net = parse_network_cfg("cfg/nist.client");
+    data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
+    //data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+    normalize_data_rows(train);
+    //normalize_data_rows(test);
+    int count = 0;
+    int iters = 50000/net.batch;
+    iters = 1000/net.batch + 1;
+    while(++count <= 2000){
+        clock_t start = clock(), end;
+        float loss = train_network_sgd(net, train, iters);
+        client_update(net, address);
+        end = clock();
+        //float test_acc = network_accuracy_gpu(net, test);
+        //float test_acc = 0;
+        printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
+    }
 }
 
 void test_ensemble()
@@ -347,460 +514,202 @@
             lr /= 2; 
         }
         matrix partial = network_predict_data(net, test);
-        float acc = matrix_accuracy(test.y, partial);
+        float acc = matrix_topk_accuracy(test.y, partial,1);
         printf("Model Accuracy: %lf\n", acc);
         matrix_add_matrix(partial, prediction);
-        acc = matrix_accuracy(test.y, prediction);
+        acc = matrix_topk_accuracy(test.y, prediction,1);
         printf("Current Ensemble Accuracy: %lf\n", acc);
         free_matrix(partial);
     }
-    float acc = matrix_accuracy(test.y, prediction);
+    float acc = matrix_topk_accuracy(test.y, prediction,1);
     printf("Full Ensemble Accuracy: %lf\n", acc);
 }
 
-void test_random_classify()
-{
-    network net = parse_network_cfg("connected.cfg");
-    matrix m = csv_to_matrix("train.csv");
-    //matrix ho = hold_out_matrix(&m, 2500);
-    float *truth = pop_column(&m, 0);
-    //float *ho_truth = pop_column(&ho, 0);
-    int i;
-    clock_t start = clock(), end;
-    int count = 0;
-    while(++count <= 300){
-        for(i = 0; i < m.rows; ++i){
-            int index = rand()%m.rows;
-            //image p = float_to_image(1690,1,1,m.vals[index]);
-            //normalize_image(p);
-            forward_network(net, m.vals[index], 1);
-            float *out = get_network_output(net);
-            float *delta = get_network_delta(net);
-            //printf("%f\n", out[0]);
-            delta[0] = truth[index] - out[0];
-            // printf("%f\n", delta[0]);
-            //printf("%f %f\n", truth[index], out[0]);
-            //backward_network(net, m.vals[index], );
-            update_network(net);
-        }
-        //float test_acc = error_network(net, m, truth);
-        //float valid_acc = error_network(net, ho, ho_truth);
-        //printf("%f, %f\n", test_acc, valid_acc);
-        //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
-        //if(valid_acc > .70) break;
-    }
-    end = clock();
-    FILE *fp = fopen("submission/out.txt", "w");
-    matrix test = csv_to_matrix("test.csv");
-    truth = pop_column(&test, 0);
-    for(i = 0; i < test.rows; ++i){
-        forward_network(net, test.vals[i], 0);
-        float *out = get_network_output(net);
-        if(fabs(out[0]) < .5) fprintf(fp, "0\n");
-        else fprintf(fp, "1\n");
-    }
-    fclose(fp);
-    printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
-}
-
-void test_split()
-{
-    data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
-    data *split = split_data(train, 0, 13);
-    printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
-}
-
-void test_im2row()
-{
-    int h = 20;
-    int w = 20;
-    int c = 3;
-    int stride = 1;
-    int size = 11;
-    image test = make_random_image(h,w,c);
-    int mc = 1;
-    int mw = ((h-size)/stride+1)*((w-size)/stride+1);
-    int mh = (size*size*c);
-    int msize = mc*mw*mh;
-    float *matrix = calloc(msize, sizeof(float));
-    int i;
-    for(i = 0; i < 1000; ++i){
-        im2col_cpu(test.data,1,  c,  h,  w,  size,  stride, 0, matrix);
-        //image render = float_to_image(mh, mw, mc, matrix);
-    }
-}
-
-void flip_network()
-{
-    network net = parse_network_cfg("cfg/voc_imagenet_orig.cfg");
-    save_network(net, "cfg/voc_imagenet_rev.cfg");
-}
-
-void tune_VOC()
-{
-    network net = parse_network_cfg("cfg/voc_start.cfg");
-    srand(2222222);
-    int i = 20;
-    char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
-    float lr = .000005;
-    float momentum = .9;
-    float decay = 0.0001;
-    while(i++ < 1000 || 1){
-        data train = load_data_image_pathfile_random("/home/pjreddie/VOC2012/trainval_paths.txt", 10, labels, 20, 256, 256);
-
-        image im = float_to_image(256, 256, 3,train.X.vals[0]);
-        show_image(im, "input");
-        visualize_network(net);
-        cvWaitKey(100);
-
-        translate_data_rows(train, -144);
-        clock_t start = clock(), end;
-        float loss = train_network_sgd(net, train, 10);
-        end = clock();
-        printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
-        free_data(train);
-        /*
-           if(i%10==0){
-           char buff[256];
-           sprintf(buff, "/home/pjreddie/voc_cfg/voc_ramp_%d.cfg", i);
-           save_network(net, buff);
-           }
-         */
-        //lr *= .99;
-    }
-}
-
-int voc_size(int x)
-{
-    x = x-1+3;
-    x = x-1+3;
-    x = x-1+3;
-    x = (x-1)*2+1;
-    x = x-1+5;
-    x = (x-1)*2+1;
-    x = (x-1)*4+11;
-    return x;
-}
-
-image features_output_size(network net, IplImage *src, int outh, int outw)
-{
-    int h = voc_size(outh);
-    int w = voc_size(outw);
-    fprintf(stderr, "%d %d\n", h, w);
-
-    IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
-    cvResize(src, sized, CV_INTER_LINEAR);
-    image im = ipl_to_image(sized);
-    //normalize_array(im.data, im.h*im.w*im.c);
-    translate_image(im, -144);
-    resize_network(net, im.h, im.w, im.c);
-    forward_network(net, im.data, 0);
-    image out = get_network_image(net);
-    free_image(im);
-    cvReleaseImage(&sized);
-    return copy_image(out);
-}
-
-void features_VOC_image_size(char *image_path, int h, int w)
-{
-    int j;
-    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
-    fprintf(stderr, "%s\n", image_path);
-
-    IplImage* src = 0;
-    if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
-    image out = features_output_size(net, src, h, w);
-    for(j = 0; j < out.c*out.h*out.w; ++j){
-        if(j != 0) printf(",");
-        printf("%g", out.data[j]);
-    }
-    printf("\n");
-    free_image(out);
-    cvReleaseImage(&src);
-}
-void visualize_imagenet_topk(char *filename)
-{
-    int i,j,k,l;
-    int topk = 10;
-    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
-    list *plist = get_paths(filename);
-    node *n = plist->front;
-    int h = voc_size(1), w = voc_size(1);
-    int num = get_network_image(net).c;
-    image **vizs = calloc(num, sizeof(image*));
-    float **score = calloc(num, sizeof(float *));
-    for(i = 0; i < num; ++i){
-        vizs[i] = calloc(topk, sizeof(image));
-        for(j = 0; j < topk; ++j) vizs[i][j] = make_image(h,w,3);
-        score[i] = calloc(topk, sizeof(float));
-    }
-
-    int count = 0;
-    while(n){
-        ++count;
-        char *image_path = (char *)n->val;
-        image im = load_image(image_path, 0, 0);
-        n = n->next;
-        if(im.h < 200 || im.w < 200) continue;
-        printf("Processing %dx%d image\n", im.h, im.w);
-        resize_network(net, im.h, im.w, im.c);
-        //scale_image(im, 1./255);
-        translate_image(im, -144);
-        forward_network(net, im.data, 0);
-        image out = get_network_image(net);
-
-        int dh = (im.h - h)/(out.h-1);
-        int dw = (im.w - w)/(out.w-1);
-        //printf("%d %d\n", dh, dw);
-        for(k = 0; k < out.c; ++k){
-            float topv = 0;
-            int topi = -1;
-            int topj = -1;
-            for(i = 0; i < out.h; ++i){
-                for(j = 0; j < out.w; ++j){
-                    float val = get_pixel(out, i, j, k);
-                    if(val > topv){
-                        topv = val;
-                        topi = i;
-                        topj = j;
-                    }
-                }
-            }
-            if(topv){
-                image sub = get_sub_image(im, dh*topi, dw*topj, h, w);
-                for(l = 0; l < topk; ++l){
-                    if(topv > score[k][l]){
-                        float swap = score[k][l];
-                        score[k][l] = topv;
-                        topv = swap;
-
-                        image swapi = vizs[k][l];
-                        vizs[k][l] = sub;
-                        sub = swapi;
-                    }
-                }
-                free_image(sub);
-            }
-        }
-        free_image(im);
-        if(count%50 == 0){
-            image grid = grid_images(vizs, num, topk);
-            //show_image(grid, "IMAGENET Visualization");
-            save_image(grid, "IMAGENET Grid Single Nonorm");
-            free_image(grid);
-        }
-    }
-    //cvWaitKey(0);
-}
-
-void visualize_imagenet_features(char *filename)
-{
-    int i,j,k;
-    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
-    list *plist = get_paths(filename);
-    node *n = plist->front;
-    int h = voc_size(1), w = voc_size(1);
-    int num = get_network_image(net).c;
-    image *vizs = calloc(num, sizeof(image));
-    for(i = 0; i < num; ++i) vizs[i] = make_image(h, w, 3);
-    while(n){
-        char *image_path = (char *)n->val;
-        image im = load_image(image_path, 0, 0);
-        printf("Processing %dx%d image\n", im.h, im.w);
-        resize_network(net, im.h, im.w, im.c);
-        forward_network(net, im.data, 0);
-        image out = get_network_image(net);
-
-        int dh = (im.h - h)/h;
-        int dw = (im.w - w)/w;
-        for(i = 0; i < out.h; ++i){
-            for(j = 0; j < out.w; ++j){
-                image sub = get_sub_image(im, dh*i, dw*j, h, w);
-                for(k = 0; k < out.c; ++k){
-                    float val = get_pixel(out, i, j, k);
-                    //printf("%f, ", val);
-                    image sub_c = copy_image(sub);
-                    scale_image(sub_c, val);
-                    add_into_image(sub_c, vizs[k], 0, 0);
-                    free_image(sub_c);
-                }
-                free_image(sub);
-            }
-        }
-        //printf("\n");
-        show_images(vizs, 10, "IMAGENET Visualization");
-        cvWaitKey(1000);
-        n = n->next;
-    }
-    cvWaitKey(0);
-}
-
 void visualize_cat()
 {
     network net = parse_network_cfg("cfg/voc_imagenet.cfg");
     image im = load_image("data/cat.png", 0, 0);
     printf("Processing %dx%d image\n", im.h, im.w);
     resize_network(net, im.h, im.w, im.c);
-    forward_network(net, im.data, 0);
+    forward_network(net, im.data, 0, 0);
 
     visualize_network(net);
     cvWaitKey(0);
 }
 
-void features_VOC_image(char *image_file, char *image_dir, char *out_dir, int flip, int interval)
+void test_correct_nist()
 {
-    int i,j;
-    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
-    char image_path[1024];
-    sprintf(image_path, "%s/%s",image_dir, image_file);
-    char out_path[1024];
-    if (flip)sprintf(out_path, "%s%d/%s_r.txt",out_dir, interval, image_file);
-    else sprintf(out_path, "%s%d/%s.txt",out_dir, interval, image_file);
-    printf("%s\n", image_file);
-
-    IplImage* src = 0;
-    if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
-    if(flip)cvFlip(src, 0, 1);
-    int w = src->width;
-    int h = src->height;
-    int sbin = 8;
-    double scale = pow(2., 1./interval);
-    int m = (w<h)?w:h;
-    int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
-    if(max_scale < interval) error("max_scale must be >= interval");
-    image *ims = calloc(max_scale+interval, sizeof(image));
-
-    for(i = 0; i < interval; ++i){
-        double factor = 1./pow(scale, i);
-        double ih =  round(h*factor);
-        double iw =  round(w*factor);
-        int ex_h = round(ih/4.) - 2;
-        int ex_w = round(iw/4.) - 2;
-        ims[i] = features_output_size(net, src, ex_h, ex_w);
-
-        ih =  round(h*factor);
-        iw =  round(w*factor);
-        ex_h = round(ih/8.) - 2;
-        ex_w = round(iw/8.) - 2;
-        ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
-        for(j = i+interval; j < max_scale; j += interval){
-            factor /= 2.;
-            ih =  round(h*factor);
-            iw =  round(w*factor);
-            ex_h = round(ih/8.) - 2;
-            ex_w = round(iw/8.) - 2;
-            ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
-        }
-    }
-    FILE *fp = fopen(out_path, "w");
-    if(fp == 0) file_error(out_path);
-    for(i = 0; i < max_scale+interval; ++i){
-        image out = ims[i];
-        fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
-        for(j = 0; j < out.c*out.h*out.w; ++j){
-            if(j != 0)fprintf(fp, ",");
-            float o = out.data[j];
-            if(o < 0) o = 0;
-            fprintf(fp, "%g", o);
-        }
-        fprintf(fp, "\n");
-        free_image(out);
-    }
-    free(ims);
-    fclose(fp);
-    cvReleaseImage(&src);
-}
-
-void test_distribution()
-{
-    IplImage* img = 0;
-    if( (img = cvLoadImage("im_small.jpg",-1)) == 0 ) file_error("im_small.jpg");
-    network net = parse_network_cfg("cfg/voc_features.cfg");
-    int h = img->height/8-2;
-    int w = img->width/8-2;
-    image out = features_output_size(net, img, h, w);
-    int c = out.c;
-    out.c = 1;
-    show_image(out, "output");
-    out.c = c;
-    image input = ipl_to_image(img);
-    show_image(input, "input");
-    CvScalar s;
-    int i,j;
-    image affects = make_image(input.h, input.w, 1);
+    srand(222222);
+    network net = parse_network_cfg("cfg/nist.cfg");
+    data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
+    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+    translate_data_rows(train, -144);
+    translate_data_rows(test, -144);
     int count = 0;
-    for(i = 0; i<img->height; i += 1){
-        for(j = 0; j < img->width; j += 1){
-            IplImage *copy = cvCloneImage(img);
-            s=cvGet2D(copy,i,j); // get the (i,j) pixel value
-            printf("%d/%d\n", count++, img->height*img->width);
-            s.val[0]=0;
-            s.val[1]=0;
-            s.val[2]=0;
-            cvSet2D(copy,i,j,s); // set the (i,j) pixel value
-            image mod = features_output_size(net, copy, h, w);
-            image dist = image_distance(out, mod);
-            show_image(affects, "affects");
-            cvWaitKey(1);
-            cvReleaseImage(&copy);
-            //affects.data[i*affects.w + j] += dist.data[3*dist.w+5];
-            affects.data[i*affects.w + j] += dist.data[1*dist.w+1];
-            free_image(mod);
-            free_image(dist);
-        }
+    int iters = 1000/net.batch;
+
+    while(++count <= 5){
+        clock_t start = clock(), end;
+        float loss = train_network_sgd(net, train, iters);
+        end = clock();
+        float test_acc = network_accuracy(net, test);
+        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
     }
-    show_image(affects, "Origins");
-    cvWaitKey(0);
-    cvWaitKey(0);
+
+    gpu_index = -1;
+    count = 0;
+    srand(222222);
+    net = parse_network_cfg("cfg/nist.cfg");
+    while(++count <= 5){
+        clock_t start = clock(), end;
+        float loss = train_network_sgd(net, train, iters);
+        end = clock();
+        float test_acc = network_accuracy(net, test);
+        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+    }
 }
 
-
-int main(int argc, char *argv[])
+void test_correct_alexnet()
 {
-    //train_full();
-    //test_distribution();
-    //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
+    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+    list *plist = get_paths("/data/imagenet/cls.train.list");
+    char **paths = (char **)list_to_array(plist);
+    printf("%d\n", plist->size);
+    clock_t time;
+    int count = 0;
+    network net;
 
-    //test_blas();
-    //test_visualize();
-    //test_gpu_blas();
-    //test_blas();
-    //test_convolve_matrix();
-    //    test_im2row();
-    //test_split();
-    //test_ensemble();
-    //test_nist_single();
-    test_nist();
-    //test_cifar10();
-    //test_vince();
-    //test_full();
-    //tune_VOC();
-    //features_VOC_image(argv[1], argv[2], argv[3], 0);
-    //features_VOC_image(argv[1], argv[2], argv[3], 1);
-    //train_VOC();
-    //features_VOC_image(argv[1], argv[2], argv[3], 0, 4);
-    //features_VOC_image(argv[1], argv[2], argv[3], 1, 4);
-    //features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3]));
-    //visualize_imagenet_features("data/assira/train.list");
-    //visualize_imagenet_topk("data/VOC2012.list");
-    //visualize_cat();
-    //flip_network();
-    //test_visualize();
-    //test_parser();
-    fprintf(stderr, "Success!\n");
-    //test_random_preprocess();
-    //test_random_classify();
-    //test_parser();
-    //test_backpropagate();
-    //test_ann();
-    //test_convolve();
-    //test_upsample();
-    //test_rotate();
-    //test_load();
-    //test_network();
-    //test_convolutional_layer();
-    //verify_convolutional_layer();
-    //test_color();
-    //cvWaitKey(0);
+    srand(222222);
+    net = parse_network_cfg("cfg/net.cfg");
+    int imgs = net.batch;
+
+    count = 0;
+    while(++count <= 5){
+        time=clock();
+        data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
+        normalize_data_rows(train);
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+        time=clock();
+        float loss = train_network(net, train);
+        printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
+        free_data(train);
+    }
+
+    gpu_index = -1;
+    count = 0;
+    srand(222222);
+    net = parse_network_cfg("cfg/net.cfg");
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    while(++count <= 5){
+        time=clock();
+        data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256);
+        normalize_data_rows(train);
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+        time=clock();
+        float loss = train_network(net, train);
+        printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
+        free_data(train);
+    }
+}
+
+void run_server()
+{
+    srand(time(0));
+    network net = parse_network_cfg("cfg/net.cfg");
+    set_batch_network(&net, 1);
+    server_update(net);
+}
+
+void test_client()
+{
+    network net = parse_network_cfg("cfg/alexnet.client");
+    clock_t time=clock();
+    client_update(net, "localhost");
+    printf("1\n");
+    client_update(net, "localhost");
+    printf("2\n");
+    client_update(net, "localhost");
+    printf("3\n");
+    printf("Transfered: %lf seconds\n", sec(clock()-time));
+}
+
+void del_arg(int argc, char **argv, int index)
+{
+    int i;
+    for(i = index; i < argc-1; ++i) argv[i] = argv[i+1];
+}
+
+int find_arg(int argc, char* argv[], char *arg)
+{
+    int i;
+    for(i = 0; i < argc; ++i) if(0==strcmp(argv[i], arg)) {
+        del_arg(argc, argv, i);
+        return 1;
+    }
     return 0;
 }
+
+int find_int_arg(int argc, char **argv, char *arg, int def)
+{
+    int i;
+    for(i = 0; i < argc-1; ++i){
+        if(0==strcmp(argv[i], arg)){
+            def = atoi(argv[i+1]);
+            del_arg(argc, argv, i);
+            del_arg(argc, argv, i);
+            break;
+        }
+    }
+    return def;
+}
+
+int main(int argc, char **argv)
+{
+    if(argc < 2){
+        fprintf(stderr, "usage: %s <function>\n", argv[0]);
+        return 0;
+    }
+    gpu_index = find_int_arg(argc, argv, "-i", 0);
+    if(find_arg(argc, argv, "-nogpu")) gpu_index = -1;
+
+#ifndef GPU
+    gpu_index = -1;
+#else
+    if(gpu_index >= 0){
+        cl_setup();
+    }
+#endif
+
+    if(0==strcmp(argv[1], "cifar")) train_cifar10();
+    else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
+    else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist();
+    else if(0==strcmp(argv[1], "test")) test_imagenet();
+    else if(0==strcmp(argv[1], "server")) run_server();
+
+#ifdef GPU
+    else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
+#endif
+
+    else if(argc < 3){
+        fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]);
+        return 0;
+    }
+    else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]);
+    else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
+    else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]);
+    else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
+    else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]);
+    else if(0==strcmp(argv[1], "init")) test_init(argv[2]);
+    else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
+    else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
+    else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]);
+    else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]);
+    else if(argc < 4){
+        fprintf(stderr, "usage: %s <function> <filename> <filename>\n", argv[0]);
+        return 0;
+    }
+    else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]);
+    fprintf(stderr, "Success!\n");
+    return 0;
+}
+

--
Gitblit v1.10.0