From aa5996d58e68edfbefe51061856aecd549dd09c4 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 13 Jan 2015 01:27:08 +0000
Subject: [PATCH] Faster

---
 src/network.c |  178 +++++++++++++++++++++++++++++++++++++++++++++++------------
 1 files changed, 142 insertions(+), 36 deletions(-)

diff --git a/src/network.c b/src/network.c
index 3a6a184..5c5ce9d 100644
--- a/src/network.c
+++ b/src/network.c
@@ -74,6 +74,7 @@
             if(!train) continue;
             dropout_layer layer = *(dropout_layer *)net.layers[i];
             forward_dropout_layer(layer, input);
+            input = layer.output;
         }
         else if(net.types[i] == FREEWEIGHT){
             if(!train) continue;
@@ -102,6 +103,7 @@
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
+            //secret_update_connected_layer((connected_layer *)net.layers[i]);
             update_connected_layer(layer);
         }
     }
@@ -119,12 +121,16 @@
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.output;
     } else if(net.types[i] == DROPOUT){
-        return get_network_output_layer(net, i-1);
+        dropout_layer layer = *(dropout_layer *)net.layers[i];
+        return layer.output;
     } else if(net.types[i] == FREEWEIGHT){
         return get_network_output_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == CROP){
+        crop_layer layer = *(crop_layer *)net.layers[i];
+        return layer.output;
     } else if(net.types[i] == NORMALIZATION){
         normalization_layer layer = *(normalization_layer *)net.layers[i];
         return layer.output;
@@ -150,6 +156,7 @@
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.delta;
     } else if(net.types[i] == DROPOUT){
+        if(i == 0) return 0;
         return get_network_delta_layer(net, i-1);
     } else if(net.types[i] == FREEWEIGHT){
         return get_network_delta_layer(net, i-1);
@@ -219,6 +226,10 @@
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
             if(i != 0) backward_maxpool_layer(layer, prev_delta);
         }
+        else if(net.types[i] == DROPOUT){
+            dropout_layer layer = *(dropout_layer *)net.layers[i];
+            backward_dropout_layer(layer, prev_delta);
+        }
         else if(net.types[i] == NORMALIZATION){
             normalization_layer layer = *(normalization_layer *)net.layers[i];
             if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
@@ -238,17 +249,15 @@
     }
 }
 
-
-
-
 float train_network_datum(network net, float *x, float *y)
 {
+    #ifdef GPU
+    if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
+    #endif
     forward_network(net, x, y, 1);
-    //int class = get_predicted_class_network(net);
     backward_network(net, x);
     float error = get_network_cost(net);
     update_network(net);
-    //return (y[class]?1:0);
     return error;
 }
 
@@ -270,6 +279,25 @@
     return (float)sum/(n*batch);
 }
 
+float train_network(network net, data d)
+{
+    int batch = net.batch;
+    int n = d.X.rows / batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_next_batch(d, batch, i*batch, X, y);
+        float err = train_network_datum(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
 float train_network_batch(network net, data d, int n)
 {
     int i,j;
@@ -289,40 +317,69 @@
     return (float)sum/(n*batch);
 }
 
-float train_network_data_cpu(network net, data d, int n)
-{
-    int batch = net.batch;
-    float *X = calloc(batch*d.X.cols, sizeof(float));
-    float *y = calloc(batch*d.y.cols, sizeof(float));
-
-    int i;
-    float sum = 0;
-    for(i = 0; i < n; ++i){
-        get_next_batch(d, batch, i*batch, X, y);
-        float err = train_network_datum(net, X, y);
-        sum += err;
-    }
-    free(X);
-    free(y);
-    return (float)sum/(n*batch);
-}
-
-void train_network(network net, data d)
+void set_learning_network(network *net, float rate, float momentum, float decay)
 {
     int i;
-    int correct = 0;
-    for(i = 0; i < d.X.rows; ++i){
-        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i]);
-        if(i%100 == 0){
-            visualize_network(net);
-            cvWaitKey(10);
+    net->learning_rate=rate;
+    net->momentum = momentum;
+    net->decay = decay;
+    for(i = 0; i < net->n; ++i){
+        if(net->types[i] == CONVOLUTIONAL){
+            convolutional_layer *layer = (convolutional_layer *)net->layers[i];
+            layer->learning_rate=rate;
+            layer->momentum = momentum;
+            layer->decay = decay;
+        }
+        else if(net->types[i] == CONNECTED){
+            connected_layer *layer = (connected_layer *)net->layers[i];
+            layer->learning_rate=rate;
+            layer->momentum = momentum;
+            layer->decay = decay;
         }
     }
-    visualize_network(net);
-    cvWaitKey(100);
-    fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
 }
 
+
+void set_batch_network(network *net, int b)
+{
+    net->batch = b;
+    int i;
+    for(i = 0; i < net->n; ++i){
+        if(net->types[i] == CONVOLUTIONAL){
+            convolutional_layer *layer = (convolutional_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == MAXPOOL){
+            maxpool_layer *layer = (maxpool_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == CONNECTED){
+            connected_layer *layer = (connected_layer *)net->layers[i];
+            layer->batch = b;
+        } else if(net->types[i] == DROPOUT){
+            dropout_layer *layer = (dropout_layer *) net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == FREEWEIGHT){
+            freeweight_layer *layer = (freeweight_layer *) net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == SOFTMAX){
+            softmax_layer *layer = (softmax_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == COST){
+            cost_layer *layer = (cost_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == CROP){
+            crop_layer *layer = (crop_layer *)net->layers[i];
+            layer->batch = b;
+        }
+    }
+}
+
+
 int get_network_input_size_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
@@ -339,6 +396,9 @@
     } else if(net.types[i] == DROPOUT){
         dropout_layer layer = *(dropout_layer *) net.layers[i];
         return layer.inputs;
+    } else if(net.types[i] == CROP){
+        crop_layer layer = *(crop_layer *) net.layers[i];
+        return layer.c*layer.h*layer.w;
     }
     else if(net.types[i] == FREEWEIGHT){
         freeweight_layer layer = *(freeweight_layer *) net.layers[i];
@@ -348,6 +408,7 @@
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.inputs;
     }
+    printf("Can't find input size\n");
     return 0;
 }
 
@@ -363,6 +424,10 @@
         image output = get_maxpool_image(layer);
         return output.h*output.w*output.c;
     }
+     else if(net.types[i] == CROP){
+        crop_layer layer = *(crop_layer *) net.layers[i];
+        return layer.c*layer.crop_height*layer.crop_width;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.outputs;
@@ -379,6 +444,7 @@
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.inputs;
     }
+    printf("Can't find output size\n");
     return 0;
 }
 
@@ -486,6 +552,10 @@
 
 float *network_predict(network net, float *input)
 {
+    #ifdef GPU
+        if(gpu_index >= 0) return network_predict_gpu(net, input);
+    #endif
+
     forward_network(net, input, 0, 0);
     float *out = get_network_output(net);
     return out;
@@ -583,18 +653,54 @@
     }
 }
 
+void compare_networks(network n1, network n2, data test)
+{
+    matrix g1 = network_predict_data(n1, test);
+    matrix g2 = network_predict_data(n2, test);
+    int i;
+    int a,b,c,d;
+    a = b = c = d = 0;
+    for(i = 0; i < g1.rows; ++i){
+        int truth = max_index(test.y.vals[i], test.y.cols);
+        int p1 = max_index(g1.vals[i], g1.cols);
+        int p2 = max_index(g2.vals[i], g2.cols);
+        if(p1 == truth){
+            if(p2 == truth) ++d;
+            else ++c;
+        }else{
+            if(p2 == truth) ++b;
+            else ++a;
+        }
+    }
+    printf("%5d %5d\n%5d %5d\n", a, b, c, d);
+    float num = pow((abs(b - c) - 1.), 2.);
+    float den = b + c;
+    printf("%f\n", num/den); 
+}
+
 float network_accuracy(network net, data d)
 {
     matrix guess = network_predict_data(net, d);
-    float acc = matrix_accuracy(d.y, guess);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
     free_matrix(guess);
     return acc;
 }
 
+float *network_accuracies(network net, data d)
+{
+    static float acc[2];
+    matrix guess = network_predict_data(net, d);
+    acc[0] = matrix_topk_accuracy(d.y, guess,1);
+    acc[1] = matrix_topk_accuracy(d.y, guess,5);
+    free_matrix(guess);
+    return acc;
+}
+
+
 float network_accuracy_multi(network net, data d, int n)
 {
     matrix guess = network_predict_data_multi(net, d, n);
-    float acc = matrix_accuracy(d.y, guess);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
     free_matrix(guess);
     return acc;
 }

--
Gitblit v1.10.0