From ab75d5c5783db4792e400f933d584984f3aa7bf0 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 20 Jun 2016 05:39:37 +0000
Subject: [PATCH] t1

---
 src/convolutional_kernels.cu |  104 +++++++++++++++++++++++++++++++++++++++------------
 1 files changed, 79 insertions(+), 25 deletions(-)

diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index 62d6079..2376835 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -72,10 +72,6 @@
 void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
 {
     int i;
-    int m = l.n;
-    int k = l.size*l.size*l.c;
-    int n = convolutional_out_height(l)*
-        convolutional_out_width(l);
 
     fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
     if(l.binary){
@@ -85,69 +81,127 @@
 
     if(l.xnor){
         binarize_filters_gpu(l.filters_gpu, l.n, l.c*l.size*l.size, l.binary_filters_gpu);
-        //binarize_gpu(l.filters_gpu, l.n*l.c*l.size*l.size, l.binary_filters_gpu);
         swap_binary(&l);
-        for(i = 0; i < l.batch; ++i){
-            binarize_input_gpu(state.input + i*l.inputs, l.c, l.h*l.w, l.binary_input_gpu + i*l.inputs);
-        }
+        binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu);
         state.input = l.binary_input_gpu;
     }
 
+#ifdef CUDNN
+    float one = 1;
+    cudnnConvolutionForward(cudnn_handle(),
+                &one,
+                l.srcTensorDesc,
+                state.input,
+                l.filterDesc,
+                l.filters_gpu,
+                l.convDesc,
+                l.fw_algo,
+                state.workspace,
+                l.workspace_size,
+                &one,
+                l.dstTensorDesc,
+                l.output_gpu);
+
+#else
+    int m = l.n;
+    int k = l.size*l.size*l.c;
+    int n = l.out_w*l.out_h;
     for(i = 0; i < l.batch; ++i){
-        im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, l.col_image_gpu);
+        im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.workspace);
         float * a = l.filters_gpu;
-        float * b = l.col_image_gpu;
+        float * b = state.workspace;
         float * c = l.output_gpu;
         gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
     }
+#endif
 
     if (l.batch_normalize) {
         forward_batchnorm_layer_gpu(l, state);
     }
-    add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n);
+    add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
 
-    activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation);
+    activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
     //if(l.dot > 0) dot_error_gpu(l);
     if(l.binary || l.xnor) swap_binary(&l);
 }
 
 void backward_convolutional_layer_gpu(convolutional_layer l, network_state state)
 {
-    int i;
-    int m = l.n;
-    int n = l.size*l.size*l.c;
-    int k = convolutional_out_height(l)*
-        convolutional_out_width(l);
+    gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
 
-    gradient_array_ongpu(l.output_gpu, m*k*l.batch, l.activation, l.delta_gpu);
-
-    backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, k);
+    backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
 
     if(l.batch_normalize){
         backward_batchnorm_layer_gpu(l, state);
     }
+    float *original_input = state.input;
 
     if(l.xnor) state.input = l.binary_input_gpu;
+#ifdef CUDNN
+    float one = 1;
+    cudnnConvolutionBackwardFilter(cudnn_handle(),
+            &one,
+            l.srcTensorDesc,
+            state.input,
+            l.ddstTensorDesc,
+            l.delta_gpu,
+            l.convDesc,
+            l.bf_algo,
+            state.workspace,
+            l.workspace_size,
+            &one,
+            l.dfilterDesc,
+            l.filter_updates_gpu);
+
+    if(state.delta){
+        if(l.binary || l.xnor) swap_binary(&l);
+        cudnnConvolutionBackwardData(cudnn_handle(),
+                &one,
+                l.filterDesc,
+                l.filters_gpu,
+                l.ddstTensorDesc,
+                l.delta_gpu,
+                l.convDesc,
+                l.bd_algo,
+                state.workspace,
+                l.workspace_size,
+                &one,
+                l.dsrcTensorDesc,
+                state.delta);
+        if(l.binary || l.xnor) swap_binary(&l);
+        if(l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta);
+    }
+
+#else
+    int m = l.n;
+    int n = l.size*l.size*l.c;
+    int k = l.out_w*l.out_h;
+
+    int i;
     for(i = 0; i < l.batch; ++i){
         float * a = l.delta_gpu;
-        float * b = l.col_image_gpu;
+        float * b = state.workspace;
         float * c = l.filter_updates_gpu;
 
-        im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, l.col_image_gpu);
+        im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.workspace);
         gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
 
         if(state.delta){
             if(l.binary || l.xnor) swap_binary(&l);
             float * a = l.filters_gpu;
             float * b = l.delta_gpu;
-            float * c = l.col_image_gpu;
+            float * c = state.workspace;
 
             gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
 
-            col2im_ongpu(l.col_image_gpu, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
-            if(l.binary || l.xnor) swap_binary(&l);
+            col2im_ongpu(state.workspace, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
+            if(l.binary || l.xnor) {
+                swap_binary(&l);
+            }
+            if(l.xnor) gradient_array_ongpu(original_input + i*l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, state.delta + i*l.c*l.h*l.w);
         }
     }
+#endif
 }
 
 void pull_convolutional_layer(convolutional_layer layer)

--
Gitblit v1.10.0