From ace5aeb0f59fdceb99e607af9780added20da37c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 24 Jan 2014 22:51:17 +0000
Subject: [PATCH] MNIST connected network showing off matrices

---
 src/connected_layer.c |  146 ++++++++++++++++++++++++++++++------------------
 1 files changed, 92 insertions(+), 54 deletions(-)

diff --git a/src/connected_layer.c b/src/connected_layer.c
index 9fafc38..6871b2e 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -1,96 +1,134 @@
 #include "connected_layer.h"
+#include "utils.h"
+#include "mini_blas.h"
 
 #include <math.h>
+#include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 
-connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activator)
+connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activation)
 {
+    fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
     int i;
     connected_layer *layer = calloc(1, sizeof(connected_layer));
     layer->inputs = inputs;
     layer->outputs = outputs;
 
     layer->output = calloc(outputs, sizeof(double*));
+    layer->delta = calloc(outputs, sizeof(double*));
 
     layer->weight_updates = calloc(inputs*outputs, sizeof(double));
+    layer->weight_momentum = calloc(inputs*outputs, sizeof(double));
     layer->weights = calloc(inputs*outputs, sizeof(double));
+    double scale = 2./inputs;
     for(i = 0; i < inputs*outputs; ++i)
-        layer->weights[i] = .5 - (double)rand()/RAND_MAX;
+        layer->weights[i] = rand_normal()*scale;
 
     layer->bias_updates = calloc(outputs, sizeof(double));
+    layer->bias_momentum = calloc(outputs, sizeof(double));
     layer->biases = calloc(outputs, sizeof(double));
     for(i = 0; i < outputs; ++i)
-        layer->biases[i] = (double)rand()/RAND_MAX;
+        //layer->biases[i] = rand_normal()*scale + scale;
+        layer->biases[i] = 0;
 
-    if(activator == SIGMOID){
-        layer->activation = sigmoid_activation;
-        layer->gradient = sigmoid_gradient;
-    }else if(activator == RELU){
-        layer->activation = relu_activation;
-        layer->gradient = relu_gradient;
-    }else if(activator == IDENTITY){
-        layer->activation = identity_activation;
-        layer->gradient = identity_gradient;
-    }
-
+    layer->activation = activation;
     return layer;
 }
 
-void run_connected_layer(double *input, connected_layer layer)
+void update_connected_layer(connected_layer layer, double step, double momentum, double decay)
 {
-    int i, j;
+    int i;
     for(i = 0; i < layer.outputs; ++i){
-        layer.output[i] = layer.biases[i];
-        for(j = 0; j < layer.inputs; ++j){
-            layer.output[i] += input[j]*layer.weights[i*layer.inputs + j];
-        }
-        layer.output[i] = layer.activation(layer.output[i]);
+        layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
+        layer.biases[i] += layer.bias_momentum[i];
     }
-}
-
-void learn_connected_layer(double *input, connected_layer layer)
-{
-    calculate_update_connected_layer(input, layer);
-    backpropagate_connected_layer(input, layer);
-}
-
-void update_connected_layer(connected_layer layer, double step)
-{
-    int i,j;
-    for(i = 0; i < layer.outputs; ++i){
-        layer.biases[i] += step*layer.bias_updates[i];
-        for(j = 0; j < layer.inputs; ++j){
-            int index = i*layer.inputs+j;
-            layer.weights[index] += step*layer.weight_updates[index];
-        }
+    for(i = 0; i < layer.outputs*layer.inputs; ++i){
+        layer.weight_momentum[i] = step*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
+        layer.weights[i] += layer.weight_momentum[i];
     }
     memset(layer.bias_updates, 0, layer.outputs*sizeof(double));
     memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double));
 }
 
-void calculate_update_connected_layer(double *input, connected_layer layer)
+void forward_connected_layer(connected_layer layer, double *input)
 {
-    int i, j;
+    int i;
+    memcpy(layer.output, layer.biases, layer.outputs*sizeof(double));
+    int m = 1;
+    int k = layer.inputs;
+    int n = layer.outputs;
+    double *a = input;
+    double *b = layer.weights;
+    double *c = layer.output;
+    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
     for(i = 0; i < layer.outputs; ++i){
-        layer.bias_updates[i] += layer.output[i];
-        for(j = 0; j < layer.inputs; ++j){
-            layer.weight_updates[i*layer.inputs + j] += layer.output[i]*input[j];
-        }
+        layer.output[i] = activate(layer.output[i], layer.activation);
     }
 }
 
-void backpropagate_connected_layer(double *input, connected_layer layer)
+void learn_connected_layer(connected_layer layer, double *input)
 {
-    int i, j;
-
-    for(j = 0; j < layer.inputs; ++j){
-        double grad = layer.gradient(input[j]);
-        input[j] = 0;
-        for(i = 0; i < layer.outputs; ++i){
-            input[j] += layer.output[i]*layer.weights[i*layer.inputs + j];
-        }
-        input[j] *= grad;
+    int i;
+    for(i = 0; i < layer.outputs; ++i){
+        layer.delta[i] *= gradient(layer.output[i], layer.activation);
+        layer.bias_updates[i] += layer.delta[i];
     }
+    int m = layer.inputs;
+    int k = 1;
+    int n = layer.outputs;
+    double *a = input;
+    double *b = layer.delta;
+    double *c = layer.weight_updates;
+    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
 }
 
+void backward_connected_layer(connected_layer layer, double *input, double *delta)
+{
+    memset(delta, 0, layer.inputs*sizeof(double));
+
+    int m = layer.inputs;
+    int k = layer.outputs;
+    int n = 1;
+
+    double *a = layer.weights;
+    double *b = layer.delta;
+    double *c = delta;
+
+    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+}
+/*
+   void forward_connected_layer(connected_layer layer, double *input)
+   {
+   int i, j;
+   for(i = 0; i < layer.outputs; ++i){
+   layer.output[i] = layer.biases[i];
+   for(j = 0; j < layer.inputs; ++j){
+   layer.output[i] += input[j]*layer.weights[i*layer.inputs + j];
+   }
+   layer.output[i] = activate(layer.output[i], layer.activation);
+   }
+   }
+   void learn_connected_layer(connected_layer layer, double *input)
+   {
+   int i, j;
+   for(i = 0; i < layer.outputs; ++i){
+   layer.delta[i] *= gradient(layer.output[i], layer.activation);
+   layer.bias_updates[i] += layer.delta[i];
+   for(j = 0; j < layer.inputs; ++j){
+   layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j];
+   }
+   }
+   }
+   void backward_connected_layer(connected_layer layer, double *input, double *delta)
+   {
+   int i, j;
+
+   for(j = 0; j < layer.inputs; ++j){
+   delta[j] = 0;
+   for(i = 0; i < layer.outputs; ++i){
+   delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j];
+   }
+   }
+   }
+ */

--
Gitblit v1.10.0