From ace5aeb0f59fdceb99e607af9780added20da37c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 24 Jan 2014 22:51:17 +0000
Subject: [PATCH] MNIST connected network showing off matrices

---
 src/network.c |  201 +++++++++++++++++++++++++++++++++++++++++++------
 1 files changed, 175 insertions(+), 26 deletions(-)

diff --git a/src/network.c b/src/network.c
index a77d607..07ac621 100644
--- a/src/network.c
+++ b/src/network.c
@@ -2,10 +2,12 @@
 #include "network.h"
 #include "image.h"
 #include "data.h"
+#include "utils.h"
 
 #include "connected_layer.h"
 #include "convolutional_layer.h"
 #include "maxpool_layer.h"
+#include "softmax_layer.h"
 
 network make_network(int n)
 {
@@ -13,6 +15,8 @@
     net.n = n;
     net.layers = calloc(net.n, sizeof(void *));
     net.types = calloc(net.n, sizeof(LAYER_TYPE));
+    net.outputs = 0;
+    net.output = 0;
     return net;
 }
 
@@ -30,6 +34,11 @@
             forward_connected_layer(layer, input);
             input = layer.output;
         }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            forward_softmax_layer(layer, input);
+            input = layer.output;
+        }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
             forward_maxpool_layer(layer, input);
@@ -38,20 +47,23 @@
     }
 }
 
-void update_network(network net, double step)
+void update_network(network net, double step, double momentum, double decay)
 {
     int i;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer(layer, step);
+            update_convolutional_layer(layer, step, momentum, decay);
         }
         else if(net.types[i] == MAXPOOL){
             //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         }
+        else if(net.types[i] == SOFTMAX){
+            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer, step, .3, 0);
+            update_connected_layer(layer, step, momentum, 0);
         }
     }
 }
@@ -64,6 +76,9 @@
     } else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.output;
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output;
@@ -83,6 +98,9 @@
     } else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.delta;
+    } else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.delta;
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.delta;
@@ -95,8 +113,26 @@
     return get_network_delta_layer(net, net.n-1);
 }
 
-void learn_network(network net, double *input)
+void calculate_error_network(network net, double *truth)
 {
+    double *delta = get_network_delta(net);
+    double *out = get_network_output(net);
+    int i, k = get_network_output_size(net);
+    for(i = 0; i < k; ++i){
+        delta[i] = truth[i] - out[i];
+    }
+}
+
+int get_predicted_class_network(network net)
+{
+    double *out = get_network_output(net);
+    int k = get_network_output_size(net);
+    return max_index(out, k);
+}
+
+void backward_network(network net, double *input, double *truth)
+{
+    calculate_error_network(net, truth);
     int i;
     double *prev_input;
     double *prev_delta;
@@ -114,7 +150,12 @@
             if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
         }
         else if(net.types[i] == MAXPOOL){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+            if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
+        }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
@@ -124,26 +165,61 @@
     }
 }
 
-void train_network_batch(network net, batch b)
+int train_network_datum(network net, double *x, double *y, double step, double momentum, double decay)
 {
-    int i,j;
-    int k = get_network_output_size(net);
+        forward_network(net, x);
+        int class = get_predicted_class_network(net);
+        backward_network(net, x, y);
+        update_network(net, step, momentum, decay);
+        return (y[class]?1:0);
+}
+
+double train_network_sgd(network net, data d, int n, double step, double momentum,double decay)
+{
+    int i;
     int correct = 0;
-    for(i = 0; i < b.n; ++i){
-        forward_network(net, b.images[i].data);
-        image o = get_network_image(net);
-        double *output = get_network_output(net);
-        double *delta = get_network_delta(net);
-        for(j = 0; j < k; ++j){
-            //printf("%f %f\n", b.truth[i][j], output[j]);
-            delta[j] = b.truth[i][j]-output[j];
-            if(fabs(delta[j]) < .5) ++correct;
-            //printf("%f\n",  output[j]);
-        }
-        learn_network(net, b.images[i].data);
-        update_network(net, .00001);
+    for(i = 0; i < n; ++i){
+        int index = rand()%d.X.rows;
+        correct += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
+        //if((i+1)%10 == 0){
+        //    printf("%d: %f\n", (i+1), (double)correct/(i+1));
+        //}
     }
-    printf("Accuracy: %f\n", (double)correct/b.n);
+    return (double)correct/n;
+}
+double train_network_batch(network net, data d, int n, double step, double momentum,double decay)
+{
+    int i;
+    int correct = 0;
+    for(i = 0; i < n; ++i){
+        int index = rand()%d.X.rows;
+        double *x = d.X.vals[index];
+        double *y = d.y.vals[index];
+        forward_network(net, x);
+        int class = get_predicted_class_network(net);
+        backward_network(net, x, y);
+        correct += (y[class]?1:0);
+    }
+    update_network(net, step, momentum, decay);
+    return (double)correct/n;
+
+}
+
+
+void train_network(network net, data d, double step, double momentum, double decay)
+{
+    int i;
+    int correct = 0;
+    for(i = 0; i < d.X.rows; ++i){
+        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay);
+        if(i%100 == 0){
+            visualize_network(net);
+            cvWaitKey(10);
+        }
+    }
+    visualize_network(net);
+    cvWaitKey(100);
+    printf("Accuracy: %f\n", (double)correct/d.X.rows);
 }
 
 int get_network_output_size_layer(network net, int i)
@@ -162,6 +238,10 @@
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.outputs;
     }
+    else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.inputs;
+    }
     return 0;
 }
 
@@ -181,7 +261,7 @@
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return get_maxpool_image(layer);
     }
-    return make_image(0,0,0);
+    return make_empty_image(0,0,0);
 }
 
 image get_network_image(network net)
@@ -191,17 +271,86 @@
         image m = get_network_image_layer(net, i);
         if(m.h != 0) return m;
     }
-    return make_image(1,1,1);
+    return make_empty_image(0,0,0);
 }
 
 void visualize_network(network net)
 {
     int i;
-    for(i = 0; i < 1; ++i){
+    char buff[256];
+    for(i = 0; i < net.n; ++i){
+        sprintf(buff, "Layer %d", i);
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            visualize_convolutional_layer(layer);
+            visualize_convolutional_filters(layer, buff);
         }
     } 
 }
 
+double *network_predict(network net, double *input)
+{
+    forward_network(net, input);
+    double *out = get_network_output(net);
+    return out;
+}
+
+matrix network_predict_data(network net, data test)
+{
+    int i,j;
+    int k = get_network_output_size(net);
+    matrix pred = make_matrix(test.X.rows, k);
+    for(i = 0; i < test.X.rows; ++i){
+        double *out = network_predict(net, test.X.vals[i]);
+        for(j = 0; j < k; ++j){
+            pred.vals[i][j] = out[j];
+        }
+    }
+    return pred;   
+}
+
+void print_network(network net)
+{
+    int i,j;
+    for(i = 0; i < net.n; ++i){
+        double *output = 0;
+        int n = 0;
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            output = layer.output;
+            image m = get_convolutional_image(layer);
+            n = m.h*m.w*m.c;
+        }
+        else if(net.types[i] == MAXPOOL){
+            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+            output = layer.output;
+            image m = get_maxpool_image(layer);
+            n = m.h*m.w*m.c;
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            output = layer.output;
+            n = layer.outputs;
+        }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            output = layer.output;
+            n = layer.inputs;
+        }
+        double mean = mean_array(output, n);
+        double vari = variance_array(output, n);
+        fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
+        if(n > 100) n = 100;
+        for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
+        if(n == 100)fprintf(stderr,".....\n");
+        fprintf(stderr, "\n");
+    }
+}
+
+double network_accuracy(network net, data d)
+{
+    matrix guess = network_predict_data(net, d);
+    double acc = matrix_accuracy(d.y, guess);
+    free_matrix(guess);
+    return acc;
+}
+

--
Gitblit v1.10.0