From ace5aeb0f59fdceb99e607af9780added20da37c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 24 Jan 2014 22:51:17 +0000
Subject: [PATCH] MNIST connected network showing off matrices

---
 src/tests.c |  482 ++++++++++++++++++++++++++++++++++++-----------------
 1 files changed, 327 insertions(+), 155 deletions(-)

diff --git a/src/tests.c b/src/tests.c
index 0e639be..c459a36 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -4,6 +4,10 @@
 #include "network.h"
 #include "image.h"
 #include "parser.h"
+#include "data.h"
+#include "matrix.h"
+#include "utils.h"
+#include "mini_blas.h"
 
 #include <time.h>
 #include <stdlib.h>
@@ -12,20 +16,48 @@
 void test_convolve()
 {
     image dog = load_image("dog.jpg");
-    //show_image_layers(dog, "Dog");
     printf("dog channels %d\n", dog.c);
     image kernel = make_random_image(3,3,dog.c);
     image edge = make_image(dog.h, dog.w, 1);
     int i;
     clock_t start = clock(), end;
     for(i = 0; i < 1000; ++i){
-        convolve(dog, kernel, 1, 0, edge);
+        convolve(dog, kernel, 1, 0, edge, 1);
     }
     end = clock();
     printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
     show_image_layers(edge, "Test Convolve");
 }
 
+void test_convolve_matrix()
+{
+    image dog = load_image("dog.jpg");
+    printf("dog channels %d\n", dog.c);
+    
+    int size = 11;
+    int stride = 1;
+    int n = 40;
+    double *filters = make_random_image(size, size, dog.c*n).data;
+
+    int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
+    int mh = (size*size*dog.c);
+    double *matrix = calloc(mh*mw, sizeof(double));
+
+    image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
+
+
+    int i;
+    clock_t start = clock(), end;
+    for(i = 0; i < 1000; ++i){
+        im2col_cpu(dog.data,  dog.c,  dog.h,  dog.w,  size,  stride, matrix);
+        gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
+    }
+    end = clock();
+    printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    show_image_layers(edge, "Test Convolve");
+    cvWaitKey(0);
+}
+
 void test_color()
 {
     image dog = load_image("test_color.png");
@@ -40,18 +72,74 @@
     int n = 3;
     int stride = 1;
     int size = 3;
-    convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
+    convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride, RELU);
     char buff[256];
     for(i = 0; i < n; ++i) {
         sprintf(buff, "Kernel %d", i);
         show_image(layer.kernels[i], buff);
     }
-    run_convolutional_layer(dog, layer);
+    forward_convolutional_layer(layer, dog.data);
     
-    maxpool_layer mlayer = *make_maxpool_layer(layer.output.h, layer.output.w, layer.output.c, 2);
-    run_maxpool_layer(layer.output,mlayer);
+    image output = get_convolutional_image(layer);
+    maxpool_layer mlayer = *make_maxpool_layer(output.h, output.w, output.c, 2);
+    forward_maxpool_layer(mlayer, layer.output);
 
-    show_image_layers(mlayer.output, "Test Maxpool Layer");
+    show_image_layers(get_maxpool_image(mlayer), "Test Maxpool Layer");
+}
+
+void verify_convolutional_layer()
+{
+    srand(0);
+    int i;
+    int n = 1;
+    int stride = 1;
+    int size = 3;
+    double eps = .00000001;
+    image test = make_random_image(5,5, 1);
+    convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU);
+    image out = get_convolutional_image(layer);
+    double **jacobian = calloc(test.h*test.w*test.c, sizeof(double));
+    
+    forward_convolutional_layer(layer, test.data);
+    image base = copy_image(out);
+
+    for(i = 0; i < test.h*test.w*test.c; ++i){
+        test.data[i] += eps;
+        forward_convolutional_layer(layer, test.data);
+        image partial = copy_image(out);
+        subtract_image(partial, base);
+        scale_image(partial, 1/eps);
+        jacobian[i] = partial.data;
+        test.data[i] -= eps;
+    }
+    double **jacobian2 = calloc(out.h*out.w*out.c, sizeof(double));
+    image in_delta = make_image(test.h, test.w, test.c);
+    image out_delta = get_convolutional_delta(layer);
+    for(i = 0; i < out.h*out.w*out.c; ++i){
+        out_delta.data[i] = 1;
+        backward_convolutional_layer(layer, test.data, in_delta.data);
+        image partial = copy_image(in_delta);
+        jacobian2[i] = partial.data;
+        out_delta.data[i] = 0;
+    }
+    int j;
+    double *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
+    double *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
+    for(i = 0; i < test.h*test.w*test.c; ++i){
+        for(j =0 ; j < out.h*out.w*out.c; ++j){
+            j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
+            j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
+            printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
+        }
+    }
+
+
+    image mj1 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
+    image mj2 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
+    printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
+    show_image(mj1, "forward jacobian");
+    show_image(mj2, "backward jacobian");
+    
 }
 
 void test_load()
@@ -90,168 +178,251 @@
     show_image(random, "Test Rotate Random");
 }
 
-void test_network()
-{
-    network net;
-    net.n = 11;
-    net.layers = calloc(net.n, sizeof(void *));
-    net.types = calloc(net.n, sizeof(LAYER_TYPE));
-    net.types[0] = CONVOLUTIONAL;
-    net.types[1] = MAXPOOL;
-    net.types[2] = CONVOLUTIONAL;
-    net.types[3] = MAXPOOL;
-    net.types[4] = CONVOLUTIONAL;
-    net.types[5] = CONVOLUTIONAL;
-    net.types[6] = CONVOLUTIONAL;
-    net.types[7] = MAXPOOL;
-    net.types[8] = CONNECTED;
-    net.types[9] = CONNECTED;
-    net.types[10] = CONNECTED;
-
-    image dog = load_image("test_hinton.jpg");
-
-    int n = 48;
-    int stride = 4;
-    int size = 11;
-    convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
-    maxpool_layer ml = *make_maxpool_layer(cl.output.h, cl.output.w, cl.output.c, 2);
-
-    n = 128;
-    size = 5;
-    stride = 1;
-    convolutional_layer cl2 = *make_convolutional_layer(ml.output.h, ml.output.w, ml.output.c, n, size, stride);
-    maxpool_layer ml2 = *make_maxpool_layer(cl2.output.h, cl2.output.w, cl2.output.c, 2);
-
-    n = 192;
-    size = 3;
-    convolutional_layer cl3 = *make_convolutional_layer(ml2.output.h, ml2.output.w, ml2.output.c, n, size, stride);
-    convolutional_layer cl4 = *make_convolutional_layer(cl3.output.h, cl3.output.w, cl3.output.c, n, size, stride);
-    n = 128;
-    convolutional_layer cl5 = *make_convolutional_layer(cl4.output.h, cl4.output.w, cl4.output.c, n, size, stride);
-    maxpool_layer ml3 = *make_maxpool_layer(cl5.output.h, cl5.output.w, cl5.output.c, 4);
-    connected_layer nl = *make_connected_layer(ml3.output.h*ml3.output.w*ml3.output.c, 4096, RELU);
-    connected_layer nl2 = *make_connected_layer(4096, 4096, RELU);
-    connected_layer nl3 = *make_connected_layer(4096, 1000, RELU);
-
-    net.layers[0] = &cl;
-    net.layers[1] = &ml;
-    net.layers[2] = &cl2;
-    net.layers[3] = &ml2;
-    net.layers[4] = &cl3;
-    net.layers[5] = &cl4;
-    net.layers[6] = &cl5;
-    net.layers[7] = &ml3;
-    net.layers[8] = &nl;
-    net.layers[9] = &nl2;
-    net.layers[10] = &nl3;
-
-    int i;
-    clock_t start = clock(), end;
-    for(i = 0; i < 10; ++i){
-        run_network(dog, net);
-        rotate_image(dog);
-    }
-    end = clock();
-    printf("Ran %lf second per iteration\n", (double)(end-start)/CLOCKS_PER_SEC/10);
-
-    show_image_layers(get_network_image(net), "Test Network Layer");
-}
-
-void test_backpropagate()
-{
-    int n = 3;
-    int size = 4;
-    int stride = 10;
-    image dog = load_image("dog.jpg");
-    show_image(dog, "Test Backpropagate Input");
-    image dog_copy = copy_image(dog);
-    convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
-    run_convolutional_layer(dog, cl);
-    show_image(cl.output, "Test Backpropagate Output");
-    int i;
-    clock_t start = clock(), end;
-    for(i = 0; i < 100; ++i){
-        backpropagate_convolutional_layer(dog_copy, cl);
-    }
-    end = clock();
-    printf("Backpropagate: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
-    start = clock();
-    for(i = 0; i < 100; ++i){
-        backpropagate_convolutional_layer_convolve(dog, cl);
-    }
-    end = clock();
-    printf("Backpropagate Using Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
-    show_image(dog_copy, "Test Backpropagate 1");
-    show_image(dog, "Test Backpropagate 2");
-    subtract_image(dog, dog_copy);
-    show_image(dog, "Test Backpropagate Difference");
-}
-
-void test_ann()
-{
-    network net;
-    net.n = 3;
-    net.layers = calloc(net.n, sizeof(void *));
-    net.types = calloc(net.n, sizeof(LAYER_TYPE));
-    net.types[0] = CONNECTED;
-    net.types[1] = CONNECTED;
-    net.types[2] = CONNECTED;
-
-    connected_layer nl = *make_connected_layer(1, 20, RELU);
-    connected_layer nl2 = *make_connected_layer(20, 20, RELU);
-    connected_layer nl3 = *make_connected_layer(20, 1, RELU);
-
-    net.layers[0] = &nl;
-    net.layers[1] = &nl2;
-    net.layers[2] = &nl3;
-
-    image t = make_image(1,1,1);
-    int count = 0;
-        
-    double avgerr = 0;
-    while(1){
-        double v = ((double)rand()/RAND_MAX);
-        double truth = v*v;
-        set_pixel(t,0,0,0,v);
-        run_network(t, net);
-        double *out = get_network_output(net);
-        double err = pow((out[0]-truth),2.);
-        avgerr = .99 * avgerr + .01 * err;
-        //if(++count % 100000 == 0) printf("%f\n", avgerr);
-        if(++count % 100000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
-        out[0] = truth - out[0];
-        learn_network(t, net);
-        update_network(net, .001);
-    }
-
-}
-
 void test_parser()
 {
-    network net = parse_network_cfg("test.cfg");
-    image t = make_image(1,1,1);
+    network net = parse_network_cfg("test_parser.cfg");
+    double input[1];
     int count = 0;
         
     double avgerr = 0;
-    while(1){
+    while(++count < 100000000){
         double v = ((double)rand()/RAND_MAX);
         double truth = v*v;
-        set_pixel(t,0,0,0,v);
-        run_network(t, net);
+        input[0] = v;
+        forward_network(net, input);
         double *out = get_network_output(net);
+        double *delta = get_network_delta(net);
         double err = pow((out[0]-truth),2.);
         avgerr = .99 * avgerr + .01 * err;
-        //if(++count % 100000 == 0) printf("%f\n", avgerr);
-        if(++count % 100000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
-        out[0] = truth - out[0];
-        learn_network(t, net);
-        update_network(net, .001);
+        if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
+        delta[0] = truth - out[0];
+        backward_network(net, input, &truth);
+        update_network(net, .001,0,0);
+    }
+}
+
+void test_data()
+{
+    char *labels[] = {"cat","dog"};
+    data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2);
+    free_data(train);
+}
+
+void test_full()
+{
+    network net = parse_network_cfg("full.cfg");
+    srand(0);
+    int i = 0;
+    char *labels[] = {"cat","dog"};
+    double lr = .00001;
+    double momentum = .9;
+    double decay = 0.01;
+    while(i++ < 1000 || 1){
+        data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2);
+        train_network(net, train, lr, momentum, decay);
+        free_data(train);
+        printf("Round %d\n", i);
+    }
+}
+
+void test_nist()
+{
+    srand(444444);
+    srand(888888);
+    network net = parse_network_cfg("nist_basic.cfg");
+    data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+    data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
+    normalize_data_rows(train);
+    normalize_data_rows(test);
+    //randomize_data(train);
+    int count = 0;
+    double lr = .0005;
+    double momentum = .9;
+    double decay = 0.01;
+    clock_t start = clock(), end;
+    while(++count <= 1000){
+        double acc = train_network_sgd(net, train, 6400, lr, momentum, decay);
+        printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, 1.-acc, lr, momentum, decay);
+        end = clock();
+        printf("Time: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+        start=end;
+        //visualize_network(net);
+        //cvWaitKey(100);
+        //lr /= 2; 
+        if(count%5 == 0 && 0){
+            double train_acc = network_accuracy(net, train);
+            fprintf(stderr, "\nTRAIN: %f\n", train_acc);
+            double test_acc = network_accuracy(net, test);
+            fprintf(stderr, "TEST: %f\n\n", test_acc);
+            printf("%d, %f, %f\n", count, train_acc, test_acc);
+        }
+    }
+}
+
+void test_ensemble()
+{
+    int i;
+    srand(888888);
+    data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+    normalize_data_rows(d);
+    data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
+    normalize_data_rows(test);
+    data train = d;
+    /*
+       data *split = split_data(d, 1, 10);
+       data train = split[0];
+       data test = split[1];
+     */
+    matrix prediction = make_matrix(test.y.rows, test.y.cols);
+    int n = 30;
+    for(i = 0; i < n; ++i){
+        int count = 0;
+        double lr = .0005;
+        double momentum = .9;
+        double decay = .01;
+        network net = parse_network_cfg("nist.cfg");
+        while(++count <= 15){
+            double acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
+            printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
+            lr /= 2; 
+        }
+        matrix partial = network_predict_data(net, test);
+        double acc = matrix_accuracy(test.y, partial);
+        printf("Model Accuracy: %lf\n", acc);
+        matrix_add_matrix(partial, prediction);
+        acc = matrix_accuracy(test.y, prediction);
+        printf("Current Ensemble Accuracy: %lf\n", acc);
+        free_matrix(partial);
+    }
+    double acc = matrix_accuracy(test.y, prediction);
+    printf("Full Ensemble Accuracy: %lf\n", acc);
+}
+
+void test_kernel_update()
+{
+    srand(0);
+    double delta[] = {.1};
+    double input[] = {.3, .5, .3, .5, .5, .5, .5, .0, .5};
+    double kernel[] = {1,2,3,4,5,6,7,8,9};
+    convolutional_layer layer = *make_convolutional_layer(3, 3, 1, 1, 3, 1, LINEAR);
+    layer.kernels[0].data = kernel;
+    layer.delta = delta;
+    learn_convolutional_layer(layer, input);
+    print_image(layer.kernels[0]);
+    print_image(get_convolutional_delta(layer));
+    print_image(layer.kernel_updates[0]);
+
+}
+
+void test_random_classify()
+{
+    network net = parse_network_cfg("connected.cfg");
+    matrix m = csv_to_matrix("train.csv");
+    //matrix ho = hold_out_matrix(&m, 2500);
+    double *truth = pop_column(&m, 0);
+    //double *ho_truth = pop_column(&ho, 0);
+    int i;
+    clock_t start = clock(), end;
+    int count = 0;
+    while(++count <= 300){
+        for(i = 0; i < m.rows; ++i){
+            int index = rand()%m.rows;
+            //image p = double_to_image(1690,1,1,m.vals[index]);
+            //normalize_image(p);
+            forward_network(net, m.vals[index]);
+            double *out = get_network_output(net);
+            double *delta = get_network_delta(net);
+            //printf("%f\n", out[0]);
+            delta[0] = truth[index] - out[0];
+            // printf("%f\n", delta[0]);
+            //printf("%f %f\n", truth[index], out[0]);
+            //backward_network(net, m.vals[index], );
+            update_network(net, .00001, 0,0);
+        }
+        //double test_acc = error_network(net, m, truth);
+        //double valid_acc = error_network(net, ho, ho_truth);
+        //printf("%f, %f\n", test_acc, valid_acc);
+        //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
+        //if(valid_acc > .70) break;
+    }
+    end = clock();
+    FILE *fp = fopen("submission/out.txt", "w");
+    matrix test = csv_to_matrix("test.csv");
+    truth = pop_column(&test, 0);
+    for(i = 0; i < test.rows; ++i){
+        forward_network(net, test.vals[i]);
+        double *out = get_network_output(net);
+        if(fabs(out[0]) < .5) fprintf(fp, "0\n");
+        else fprintf(fp, "1\n");
+    }
+    fclose(fp);
+    printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+}
+
+void test_split()
+{
+    data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+    data *split = split_data(train, 0, 13);
+    printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
+}
+
+double *random_matrix(int rows, int cols)
+{
+    int i, j;
+    double *m = calloc(rows*cols, sizeof(double));
+    for(i = 0; i < rows; ++i){
+        for(j = 0; j < cols; ++j){
+            m[i*cols+j] = (double)rand()/RAND_MAX;
+        }
+    }
+    return m;
+}
+
+void test_blas()
+{
+    int m = 6025, n = 20, k = 11*11*3;
+    double *a = random_matrix(m,k);
+    double *b = random_matrix(k,n);
+    double *c = random_matrix(m,n);
+    int i;
+    for(i = 0; i<1000; ++i){
+        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+    }
+}
+
+void test_im2row()
+{
+    int h = 20;
+    int w = 20;
+    int c = 3;
+    int stride = 1;
+    int size = 11;
+    image test = make_random_image(h,w,c);
+    int mc = 1;
+    int mw = ((h-size)/stride+1)*((w-size)/stride+1);
+    int mh = (size*size*c);
+    int msize = mc*mw*mh;
+    double *matrix = calloc(msize, sizeof(double));
+    int i;
+    for(i = 0; i < 1000; ++i){
+    im2col_cpu(test.data,  c,  h,  w,  size,  stride, matrix);
+    image render = double_to_image(mh, mw, mc, matrix);
     }
 }
 
 int main()
 {
-    test_parser();
+    //test_blas();
+ //test_convolve_matrix();
+//    test_im2row();
+    //test_kernel_update();
+    //test_split();
+    //test_ensemble();
+    test_nist();
+    //test_full();
+    //test_random_preprocess();
+    //test_random_classify();
+    //test_parser();
     //test_backpropagate();
     //test_ann();
     //test_convolve();
@@ -260,7 +431,8 @@
     //test_load();
     //test_network();
     //test_convolutional_layer();
+    //verify_convolutional_layer();
     //test_color();
-    cvWaitKey(0);
+    //cvWaitKey(0);
     return 0;
 }

--
Gitblit v1.10.0