From ae43c2bc32fbb838bfebeeaf2c2b058ccab5c83c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@burninator.cs.washington.edu>
Date: Thu, 23 Jun 2016 05:31:14 +0000
Subject: [PATCH] hi

---
 src/blas_kernels.cu |  284 ++++++++++++++++++++++++++++++++++++++++++++++++++++----
 1 files changed, 262 insertions(+), 22 deletions(-)

diff --git a/src/blas_kernels.cu b/src/blas_kernels.cu
index 8f05eb9..ac537d8 100644
--- a/src/blas_kernels.cu
+++ b/src/blas_kernels.cu
@@ -1,6 +1,7 @@
 #include "cuda_runtime.h"
 #include "curand.h"
 #include "cublas_v2.h"
+#include <assert.h>
 
 extern "C" {
 #include "blas.h"
@@ -8,13 +9,144 @@
 #include "utils.h"
 }
 
+__global__ void scale_bias_kernel(float *output, float *biases, int n, int size)
+{
+    int offset = blockIdx.x * blockDim.x + threadIdx.x;
+    int filter = blockIdx.y;
+    int batch = blockIdx.z;
+
+    if(offset < size) output[(batch*n+filter)*size + offset] *= biases[filter];
+}
+
+void scale_bias_gpu(float *output, float *biases, int batch, int n, int size)
+{
+    dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
+    dim3 dimBlock(BLOCK, 1, 1);
+
+    scale_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
+    check_error(cudaPeekAtLastError());
+}
+
+__global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
+{
+    __shared__ float part[BLOCK];
+    int i,b;
+    int filter = blockIdx.x;
+    int p = threadIdx.x;
+    float sum = 0;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < size; i += BLOCK){
+            int index = p + i + size*(filter + n*b);
+            sum += (p+i < size) ? delta[index]*x_norm[index] : 0;
+        }
+    }
+    part[p] = sum;
+    __syncthreads();
+    if (p == 0) {
+        for(i = 0; i < BLOCK; ++i) scale_updates[filter] += part[i];
+    }
+}
+
+void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
+{
+    backward_scale_kernel<<<n, BLOCK>>>(x_norm, delta, batch, n, size, scale_updates);
+    check_error(cudaPeekAtLastError());
+}
+
+__global__ void add_bias_kernel(float *output, float *biases, int n, int size)
+{
+    int offset = blockIdx.x * blockDim.x + threadIdx.x;
+    int filter = blockIdx.y;
+    int batch = blockIdx.z;
+
+    if(offset < size) output[(batch*n+filter)*size + offset] += biases[filter];
+}
+
+void add_bias_gpu(float *output, float *biases, int batch, int n, int size)
+{
+    dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
+    dim3 dimBlock(BLOCK, 1, 1);
+
+    add_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
+    check_error(cudaPeekAtLastError());
+}
+
+__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size)
+{
+    __shared__ float part[BLOCK];
+    int i,b;
+    int filter = blockIdx.x;
+    int p = threadIdx.x;
+    float sum = 0;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < size; i += BLOCK){
+            int index = p + i + size*(filter + n*b);
+            sum += (p+i < size) ? delta[index] : 0;
+        }
+    }
+    part[p] = sum;
+    __syncthreads();
+    if (p == 0) {
+        for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i];
+    }
+}
+
+/*
+__global__ void dot_kernel(float *output, float scale, int batch, int n, int size, float *delta)
+{
+    int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    int f1 = index / n;
+    int f2 = index % n;
+    if (f2 <= f1) return;
+    
+    float sum = 0;
+    float norm1 = 0;
+    float norm2 = 0;
+    int b, i;
+    for(b = 0; b <  batch; ++b){
+        for(i = 0; i < size; ++i){
+            int i1 = b * size * n + f1 * size + i;
+            int i2 = b * size * n + f2 * size + i;
+            sum += output[i1] * output[i2];
+            norm1 += output[i1] * output[i1];
+            norm2 += output[i2] * output[i2];
+        }
+    }
+    norm1 = sqrt(norm1);
+    norm2 = sqrt(norm2);
+    float norm = norm1 * norm2;
+    sum = sum / norm;
+    for(b = 0; b <  batch; ++b){
+        for(i = 0; i < size; ++i){
+            int i1 = b * size * n + f1 * size + i;
+            int i2 = b * size * n + f2 * size + i;
+            delta[i1] += - scale * sum * output[i2] / norm;
+            delta[i2] += - scale * sum * output[i1] / norm;
+        }
+    }
+}
+
+void dot_error_gpu(layer l)
+{
+    dot_kernel<<<cuda_gridsize(l.n*l.n), BLOCK>>>(l.output_gpu, l.dot, l.batch, l.n, l.out_w * l.out_h, l.delta_gpu);
+    check_error(cudaPeekAtLastError());
+}
+*/
+
+void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
+{
+    backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size);
+    check_error(cudaPeekAtLastError());
+}
+
+
 __global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial)
 {
     int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (index >= N) return;
     int f = (index/spatial)%filters;
     
-    x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .00001f);
+    x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f);
 }
 
 __global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
@@ -23,7 +155,7 @@
     if (index >= N) return;
     int f = (index/spatial)%filters;
     
-    delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
+    delta[index] = delta[index] * 1./(sqrt(variance[f]) + .000001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
 }
 
 extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
@@ -45,7 +177,7 @@
             variance_delta[i] += delta[index]*(x[index] - mean[i]);
         }
     }
-    variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
+    variance_delta[i] *= -.5 * pow(variance[i] + .000001f, (float)(-3./2.));
 }
 
 __global__ void accumulate_kernel(float *x, int n, int groups, float *sum)
@@ -82,7 +214,7 @@
         for(i = 0; i < threads; ++i){
             mean_delta[filter] += local[i];
         }
-        mean_delta[filter] *= (-1./sqrt(variance[filter] + .00001f));
+        mean_delta[filter] *= (-1./sqrt(variance[filter] + .000001f));
     }
 }
 
@@ -110,7 +242,7 @@
         for(i = 0; i < threads; ++i){
             variance_delta[filter] += local[i];
         }
-        variance_delta[filter] *= -.5 * pow(variance[filter] + .00001f, (float)(-3./2.));
+        variance_delta[filter] *= -.5 * pow(variance[filter] + .000001f, (float)(-3./2.));
     }
 }
 
@@ -127,7 +259,7 @@
             mean_delta[i] += delta[index];
         }
     }
-    mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
+    mean_delta[i] *= (-1./sqrt(variance[i] + .000001f));
 }
 
 extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
@@ -166,7 +298,7 @@
 
 __global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
 {
-    float scale = 1./(batch * spatial);
+    float scale = 1./(batch * spatial - 1);
     int j,k;
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (i >= filters) return;
@@ -198,6 +330,12 @@
     if(i < N) X[i*INCX] = ALPHA;
 }
 
+__global__ void constrain_kernel(int N, float ALPHA, float *X, int INCX)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if(i < N) X[i*INCX] = min(ALPHA, max(-ALPHA, X[i*INCX]));
+}
+
 __global__ void scal_kernel(int N, float ALPHA, float *X, int INCX)
 {
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@@ -287,7 +425,7 @@
         for(i = 0; i < threads; ++i){
             variance[filter] += local[i];
         }
-        variance[filter] /= spatial * batch;
+        variance[filter] /= (spatial * batch - 1);
     }
 }
 
@@ -362,6 +500,13 @@
     check_error(cudaPeekAtLastError());
 }
 
+extern "C" void constrain_ongpu(int N, float ALPHA, float * X, int INCX)
+{
+    constrain_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
+    check_error(cudaPeekAtLastError());
+}
+
+
 extern "C" void scal_ongpu(int N, float ALPHA, float * X, int INCX)
 {
     scal_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
@@ -374,26 +519,121 @@
     check_error(cudaPeekAtLastError());
 }
 
-__global__ void shortcut_kernel(int size, float *out, int w, int h, int c, int batch, int sample, float *add, int stride, int c2, int min_c)
+__global__ void shortcut_kernel(int size, int minw, int minh, int minc, int stride, int sample, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out)
 {
     int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (id >= size) return;
-    int i = id % (w/sample);
-    id /= (w/sample);
-    int j = id % (h/sample);
-    id /= (h/sample);
-    int k = id % min_c;
-    id /= min_c;
-    int b = id;
-    int out_index = i*sample + w*(j*sample + h*(k + c*b));
-    int add_index = b*w*stride/sample*h*stride/sample*c2 + i*stride + w*stride/sample*(j*stride + h*stride/sample*k);
+    int i = id % minw;
+    id /= minw;
+    int j = id % minh;
+    id /= minh;
+    int k = id % minc;
+    id /= minc;
+    int b = id % batch;
+
+    int out_index = i*sample + w2*(j*sample + h2*(k + c2*b));
+    int add_index = i*stride + w1*(j*stride + h1*(k + c1*b));
     out[out_index] += add[add_index];
 }
 
-extern "C" void shortcut_gpu(float *out, int w, int h, int c, int batch, int sample, float *add, int stride, int c2)
+extern "C" void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out)
 {
-    int min_c = (c < c2) ? c : c2;
-    int size = batch * w/sample * h/sample * min_c;
-    shortcut_kernel<<<cuda_gridsize(size), BLOCK>>>(size, out, w, h, c, batch, sample, add, stride, c2, min_c);
+    int minw = (w1 < w2) ? w1 : w2;
+    int minh = (h1 < h2) ? h1 : h2;
+    int minc = (c1 < c2) ? c1 : c2;
+
+    int stride = w1/w2;
+    int sample = w2/w1;
+    assert(stride == h1/h2);
+    assert(sample == h2/h1);
+    if(stride < 1) stride = 1;
+    if(sample < 1) sample = 1;
+
+    int size = batch * minw * minh * minc;
+    shortcut_kernel<<<cuda_gridsize(size), BLOCK>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out);
+    check_error(cudaPeekAtLastError());
+}
+
+__global__ void smooth_l1_kernel(int n, float *pred, float *truth, float *delta, float *error)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if(i < n){
+        float diff = truth[i] - pred[i];
+        float abs_val = abs(diff);
+        if(abs_val < 1) {
+            error[i] = diff * diff;
+            delta[i] = diff;
+        }
+        else {
+            error[i] = 2*abs_val - 1;
+            delta[i] = (diff < 0) ? -1 : 1;
+        }
+    }
+}
+
+extern "C" void smooth_l1_gpu(int n, float *pred, float *truth, float *delta, float *error)
+{
+    smooth_l1_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta, error);
+    check_error(cudaPeekAtLastError());
+}
+
+__global__ void l2_kernel(int n, float *pred, float *truth, float *delta, float *error)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if(i < n){
+        float diff = truth[i] - pred[i];
+        error[i] = diff * diff; //I know this is technically wrong, deal with it.
+        delta[i] = diff;
+    }
+}
+
+extern "C" void l2_gpu(int n, float *pred, float *truth, float *delta, float *error)
+{
+    l2_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta, error);
+    check_error(cudaPeekAtLastError());
+}
+
+
+__global__ void weighted_sum_kernel(int n, float *a, float *b, float *s, float *c)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if(i < n){
+        c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0);
+    }
+}
+
+extern "C" void weighted_sum_gpu(float *a, float *b, float *s, int num, float *c)
+{
+    weighted_sum_kernel<<<cuda_gridsize(num), BLOCK>>>(num, a, b, s, c);
+    check_error(cudaPeekAtLastError());
+}
+
+__global__ void weighted_delta_kernel(int n, float *a, float *b, float *s, float *da, float *db, float *ds, float *dc)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if(i < n){
+        if(da) da[i] += dc[i] * s[i];
+        db[i] += dc[i] * (1-s[i]);
+        ds[i] += dc[i] * a[i] + dc[i] * -b[i];
+    }
+}
+
+extern "C" void weighted_delta_gpu(float *a, float *b, float *s, float *da, float *db, float *ds, int num, float *dc)
+{
+    weighted_delta_kernel<<<cuda_gridsize(num), BLOCK>>>(num, a, b, s, da, db, ds, dc);
+    check_error(cudaPeekAtLastError());
+}
+
+__global__ void mult_add_into_kernel(int n, float *a, float *b, float *c)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if(i < n){
+        c[i] += a[i]*b[i];
+    }
+}
+
+extern "C" void mult_add_into_gpu(int num, float *a, float *b, float *c)
+{
+    mult_add_into_kernel<<<cuda_gridsize(num), BLOCK>>>(num, a, b, c);
     check_error(cudaPeekAtLastError());
 }

--
Gitblit v1.10.0