From ae43c2bc32fbb838bfebeeaf2c2b058ccab5c83c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@burninator.cs.washington.edu>
Date: Thu, 23 Jun 2016 05:31:14 +0000
Subject: [PATCH] hi

---
 src/classifier.c |  179 +++++++++++++++++++++++++++++++++++++++++++++++++----------
 1 files changed, 147 insertions(+), 32 deletions(-)

diff --git a/src/classifier.c b/src/classifier.c
index fdbe534..2d0d0e0 100644
--- a/src/classifier.c
+++ b/src/classifier.c
@@ -3,6 +3,8 @@
 #include "parser.h"
 #include "option_list.h"
 #include "blas.h"
+#include "classifier.h"
+#include <sys/time.h>
 
 #ifdef OPENCV
 #include "opencv2/highgui/highgui_c.h"
@@ -36,7 +38,7 @@
     return options;
 }
 
-void train_classifier(char *datacfg, char *cfgfile, char *weightfile)
+void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
 {
     data_seed = time(0);
     srand(time(0));
@@ -47,8 +49,9 @@
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    if(clear) *net.seen = 0;
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = 1024;
+    int imgs = net.batch*net.subdivisions;
 
     list *options = read_data_cfg(datacfg);
 
@@ -71,7 +74,7 @@
     args.w = net.w;
     args.h = net.h;
 
-    args.min = net.w;
+    args.min = net.min_crop;
     args.max = net.max_crop;
     args.size = net.w;
 
@@ -94,14 +97,14 @@
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
 
-/*
-        int u;
-        for(u = 0; u < net.batch; ++u){
-            image im = float_to_image(net.w, net.h, 3, train.X.vals[u]);
-            show_image(im, "loaded");
-            cvWaitKey(0);
-        }
-        */
+        /*
+           int u;
+           for(u = 0; u < net.batch; ++u){
+           image im = float_to_image(net.w, net.h, 3, train.X.vals[u]);
+           show_image(im, "loaded");
+           cvWaitKey(0);
+           }
+         */
 
         float loss = train_network(net, train);
         if(avg_loss == -1) avg_loss = loss;
@@ -114,7 +117,7 @@
             sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
             save_weights(net, buff);
         }
-        if(*net.seen%100 == 0){
+        if(get_current_batch(net)%100 == 0){
             char buff[256];
             sprintf(buff, "%s/%s.backup",backup_directory,base);
             save_weights(net, buff);
@@ -239,8 +242,8 @@
         }
         int w = net.w;
         int h = net.h;
-        image im = load_image_color(paths[i], w, h);
         int shift = 32;
+        image im = load_image_color(paths[i], w+shift, h+shift);
         image images[10];
         images[0] = crop_image(im, -shift, -shift, w, h);
         images[1] = crop_image(im, shift, -shift, w, h);
@@ -299,6 +302,7 @@
     float avg_topk = 0;
     int *indexes = calloc(topk, sizeof(int));
 
+    int size = net.w;
     for(i = 0; i < m; ++i){
         int class = -1;
         char *path = paths[i];
@@ -309,13 +313,15 @@
             }
         }
         image im = load_image_color(paths[i], 0, 0);
-        resize_network(&net, im.w, im.h);
+        image resized = resize_min(im, size);
+        resize_network(&net, resized.w, resized.h);
         //show_image(im, "orig");
         //show_image(crop, "cropped");
         //cvWaitKey(0);
-        float *pred = network_predict(net, im.data);
+        float *pred = network_predict(net, resized.data);
 
         free_image(im);
+        free_image(resized);
         top_k(pred, classes, topk, indexes);
 
         if(indexes[0] == class) avg_acc += 1;
@@ -332,10 +338,10 @@
 {
     int i, j;
     network net = parse_network_cfg(filename);
-    set_batch_network(&net, 1);
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    set_batch_network(&net, 1);
     srand(time(0));
 
     list *options = read_data_cfg(datacfg);
@@ -373,8 +379,8 @@
         //cvWaitKey(0);
         float *pred = network_predict(net, crop.data);
 
+        if(resized.data != im.data) free_image(resized);
         free_image(im);
-        free_image(resized);
         free_image(crop);
         top_k(pred, classes, topk, indexes);
 
@@ -406,7 +412,7 @@
 
     char **labels = get_labels(label_list);
     list *plist = get_paths(valid_list);
-    int scales[] = {224, 256, 384, 480, 512};
+    int scales[] = {192, 224, 288, 320, 352};
     int nscales = sizeof(scales)/sizeof(scales[0]);
 
     char **paths = (char **)list_to_array(plist);
@@ -429,22 +435,14 @@
         float *pred = calloc(classes, sizeof(float));
         image im = load_image_color(paths[i], 0, 0);
         for(j = 0; j < nscales; ++j){
-            int w, h;
-            if(im.w < im.h){
-                w = scales[j];
-                h = (im.h*w)/im.w;
-            } else {
-                h = scales[j];
-                w = (im.w * h) / im.h;
-            }
-            resize_network(&net, w, h);
-            image r = resize_image(im, w, h);
+            image r = resize_min(im, scales[j]);
+            resize_network(&net, r.w, r.h);
             float *p = network_predict(net, r.data);
             axpy_cpu(classes, 1, p, 1, pred, 1);
             flip_image(r);
             p = network_predict(net, r.data);
             axpy_cpu(classes, 1, p, 1, pred, 1);
-            free_image(r);
+            if(r.data != im.data) free_image(r);
         }
         free_image(im);
         top_k(pred, classes, topk, indexes);
@@ -479,6 +477,7 @@
     int *indexes = calloc(top, sizeof(int));
     char buff[256];
     char *input = buff;
+    int size = net.w;
     while(1){
         if(filename){
             strncpy(input, filename, 256);
@@ -489,8 +488,12 @@
             if(!input) return;
             strtok(input, "\n");
         }
-        image im = load_image_color(input, net.w, net.h);
-        float *X = im.data;
+        image im = load_image_color(input, 0, 0);
+        image r = resize_min(im, size);
+        resize_network(&net, r.w, r.h);
+        printf("%d %d\n", r.w, r.h);
+
+        float *X = r.data;
         time=clock();
         float *predictions = network_predict(net, X);
         top_predictions(net, top, indexes);
@@ -499,11 +502,52 @@
             int index = indexes[i];
             printf("%s: %f\n", names[index], predictions[index]);
         }
+        if(r.data != im.data) free_image(r);
         free_image(im);
         if (filename) break;
     }
 }
 
+
+void label_classifier(char *datacfg, char *filename, char *weightfile)
+{
+    int i;
+    network net = parse_network_cfg(filename);
+    set_batch_network(&net, 1);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    list *options = read_data_cfg(datacfg);
+
+    char *label_list = option_find_str(options, "names", "data/labels.list");
+    char *test_list = option_find_str(options, "test", "data/train.list");
+    int classes = option_find_int(options, "classes", 2);
+
+    char **labels = get_labels(label_list);
+    list *plist = get_paths(test_list);
+
+    char **paths = (char **)list_to_array(plist);
+    int m = plist->size;
+    free_list(plist);
+
+    for(i = 0; i < m; ++i){
+        image im = load_image_color(paths[i], 0, 0);
+        image resized = resize_min(im, net.w);
+        image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h);
+        float *pred = network_predict(net, crop.data);
+
+        if(resized.data != im.data) free_image(resized);
+        free_image(im);
+        free_image(crop);
+        int ind = max_index(pred, classes);
+
+        printf("%s\n", labels[ind]);
+    }
+}
+
+
 void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer)
 {
     int curr = 0;
@@ -577,6 +621,73 @@
 }
 
 
+void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
+{
+#ifdef OPENCV
+    printf("Classifier Demo\n");
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    list *options = read_data_cfg(datacfg);
+
+    srand(2222222);
+    CvCapture * cap;
+
+    if(filename){
+        cap = cvCaptureFromFile(filename);
+    }else{
+        cap = cvCaptureFromCAM(cam_index);
+    }
+
+    int top = option_find_int(options, "top", 1);
+
+    char *name_list = option_find_str(options, "names", 0);
+    char **names = get_labels(name_list);
+
+    int *indexes = calloc(top, sizeof(int));
+
+    if(!cap) error("Couldn't connect to webcam.\n");
+    cvNamedWindow("Classifier", CV_WINDOW_NORMAL); 
+    cvResizeWindow("Classifier", 512, 512);
+    float fps = 0;
+    int i;
+
+    while(1){
+        struct timeval tval_before, tval_after, tval_result;
+        gettimeofday(&tval_before, NULL);
+
+        image in = get_image_from_stream(cap);
+        image in_s = resize_image(in, net.w, net.h);
+        show_image(in, "Classifier");
+
+        float *predictions = network_predict(net, in_s.data);
+        top_predictions(net, top, indexes);
+
+        printf("\033[2J");
+        printf("\033[1;1H");
+        printf("\nFPS:%.0f\n",fps);
+
+        for(i = 0; i < top; ++i){
+            int index = indexes[i];
+            printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
+        }
+
+        free_image(in_s);
+        free_image(in);
+
+        cvWaitKey(10);
+
+        gettimeofday(&tval_after, NULL);
+        timersub(&tval_after, &tval_before, &tval_result);
+        float curr = 1000000.f/((long int)tval_result.tv_usec);
+        fps = .9*fps + .1*curr;
+    }
+#endif
+}
+
+
 void run_classifier(int argc, char **argv)
 {
     if(argc < 4){
@@ -584,6 +695,8 @@
         return;
     }
 
+    int cam_index = find_int_arg(argc, argv, "-c", 0);
+    int clear = find_arg(argc, argv, "-clear");
     char *data = argv[3];
     char *cfg = argv[4];
     char *weights = (argc > 5) ? argv[5] : 0;
@@ -591,8 +704,10 @@
     char *layer_s = (argc > 7) ? argv[7]: 0;
     int layer = layer_s ? atoi(layer_s) : -1;
     if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
-    else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights);
+    else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear);
+    else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);
     else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
+    else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights);
     else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
     else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);
     else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights);

--
Gitblit v1.10.0