From ae43c2bc32fbb838bfebeeaf2c2b058ccab5c83c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@burninator.cs.washington.edu>
Date: Thu, 23 Jun 2016 05:31:14 +0000
Subject: [PATCH] hi

---
 src/darknet.c |  958 ++++++++++++++++-------------------------------------------
 1 files changed, 268 insertions(+), 690 deletions(-)

diff --git a/src/darknet.c b/src/darknet.c
index 4f575dc..aee9521 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -1,747 +1,325 @@
-#include "connected_layer.h"
-#include "convolutional_layer.h"
-#include "maxpool_layer.h"
-#include "network.h"
-#include "image.h"
-#include "parser.h"
-#include "data.h"
-#include "matrix.h"
-#include "utils.h"
-#include "blas.h"
-#include "matrix.h"
-#include "server.h"
-
 #include <time.h>
 #include <stdlib.h>
 #include <stdio.h>
 
-#define _GNU_SOURCE
-#include <fenv.h>
+#include "parser.h"
+#include "utils.h"
+#include "cuda.h"
+#include "blas.h"
+#include "connected_layer.h"
 
-void test_load()
+#ifdef OPENCV
+#include "opencv2/highgui/highgui_c.h"
+#endif
+
+extern void run_imagenet(int argc, char **argv);
+extern void run_yolo(int argc, char **argv);
+extern void run_coco(int argc, char **argv);
+extern void run_writing(int argc, char **argv);
+extern void run_captcha(int argc, char **argv);
+extern void run_nightmare(int argc, char **argv);
+extern void run_dice(int argc, char **argv);
+extern void run_compare(int argc, char **argv);
+extern void run_classifier(int argc, char **argv);
+extern void run_char_rnn(int argc, char **argv);
+extern void run_vid_rnn(int argc, char **argv);
+extern void run_tag(int argc, char **argv);
+extern void run_cifar(int argc, char **argv);
+extern void run_go(int argc, char **argv);
+extern void run_art(int argc, char **argv);
+
+void change_rate(char *filename, float scale, float add)
 {
-    image dog = load_image("dog.jpg", 300, 400);
-    show_image(dog, "Test Load");
-    show_image_layers(dog, "Test Load");
+    // Ready for some weird shit??
+    FILE *fp = fopen(filename, "r+b");
+    if(!fp) file_error(filename);
+    float rate = 0;
+    fread(&rate, sizeof(float), 1, fp);
+    printf("Scaling learning rate from %f to %f\n", rate, rate*scale+add);
+    rate = rate*scale + add;
+    fseek(fp, 0, SEEK_SET);
+    fwrite(&rate, sizeof(float), 1, fp);
+    fclose(fp);
 }
 
-void test_parser()
+void average(int argc, char *argv[])
 {
-    network net = parse_network_cfg("cfg/trained_imagenet.cfg");
-    save_network(net, "cfg/trained_imagenet_smaller.cfg");
-}
-
-#define AMNT 3
-void draw_detection(image im, float *box, int side)
-{
-    int j;
-    int r, c;
-    float amount[AMNT] = {0};
-    for(r = 0; r < side*side; ++r){
-        float val = box[r*5];
-        for(j = 0; j < AMNT; ++j){
-            if(val > amount[j]) {
-                float swap = val;
-                val = amount[j];
-                amount[j] = swap;
-            }
-        }
-    }
-    float smallest = amount[AMNT-1];
-
-    for(r = 0; r < side; ++r){
-        for(c = 0; c < side; ++c){
-            j = (r*side + c) * 5;
-            printf("Prob: %f\n", box[j]);
-            if(box[j] >= smallest){
-                int d = im.w/side;
-                int y = r*d+box[j+1]*d;
-                int x = c*d+box[j+2]*d;
-                int h = box[j+3]*256;
-                int w = box[j+4]*256;
-                //printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
-                //printf("%d %d %d %d\n", x, y, w, h);
-                //printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
-                draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2);
-            }
-        }
-    }
-    show_image(im, "box");
-    cvWaitKey(0);
-}
-
-
-void train_detection_net(char *cfgfile)
-{
-    float avg_loss = 1;
-    //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
+    char *cfgfile = argv[2];
+    char *outfile = argv[3];
+    gpu_index = -1;
     network net = parse_network_cfg(cfgfile);
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = 1024;
-    srand(time(0));
-    //srand(23410);
-    int i = 0;
-    list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt");
-    char **paths = (char **)list_to_array(plist);
-    printf("%d\n", plist->size);
-    data train, buffer;
-    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
-    clock_t time;
-    while(1){
-        i += 1;
-        time=clock();
-        pthread_join(load_thread, 0);
-        train = buffer;
-        load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
-        //data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256);
+    network sum = parse_network_cfg(cfgfile);
 
-/*
-        image im = float_to_image(224, 224, 3, train.X.vals[923]);
-        draw_detection(im, train.y.vals[923], 7);
-        */
+    char *weightfile = argv[4];   
+    load_weights(&sum, weightfile);
 
-        normalize_data_rows(train);
-        printf("Loaded: %lf seconds\n", sec(clock()-time));
-        time=clock();
-        float loss = train_network(net, train);
-        avg_loss = avg_loss*.9 + loss*.1;
-        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
-        if(i%100==0){
-            char buff[256];
-            sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i);
-            save_network(net, buff);
-        }
-        free_data(train);
-    }
-}
-
-void validate_detection_net(char *cfgfile)
-{
-    network net = parse_network_cfg(cfgfile);
-    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    srand(time(0));
-
-    list *plist = get_paths("/home/pjreddie/data/imagenet/detection.val");
-    char **paths = (char **)list_to_array(plist);
-
-    int m = plist->size;
-    int i = 0;
-    int splits = 50;
-    int num = (i+1)*m/splits - i*m/splits;
-
-    fprintf(stderr, "%d\n", m);
-    data val, buffer;
-    pthread_t load_thread = load_data_thread(paths, num, 0, 0, 245, 224, 224, &buffer);
-    clock_t time;
-    for(i = 1; i <= splits; ++i){
-        time=clock();
-        pthread_join(load_thread, 0);
-        val = buffer;
-        normalize_data_rows(val);
-
-        num = (i+1)*m/splits - i*m/splits;
-        char **part = paths+(i*m/splits);
-        if(i != splits) load_thread = load_data_thread(part, num, 0, 0, 245, 224, 224, &buffer);
- 
-        fprintf(stderr, "Loaded: %lf seconds\n", sec(clock()-time));
-        matrix pred = network_predict_data(net, val);
-        int j, k;
-        for(j = 0; j < pred.rows; ++j){
-            for(k = 0; k < pred.cols; k += 5){
-                if (pred.vals[j][k] > .005){
-                    int index = k/5; 
-                    int r = index/7;
-                    int c = index%7;
-                    float y = (32.*(r + pred.vals[j][k+1]))/224.;
-                    float x = (32.*(c + pred.vals[j][k+2]))/224.;
-                    float h = (256.*(pred.vals[j][k+3]))/224.;
-                    float w = (256.*(pred.vals[j][k+4]))/224.;
-                    printf("%d %f %f %f %f %f\n", (i-1)*m/splits + j + 1, pred.vals[j][k], y, x, h, w);
-                }
-            }
-        }
-
-        time=clock();
-        free_data(val);
-    }
-}
-/*
-
-void train_imagenet_distributed(char *address)
-{
-    float avg_loss = 1;
-    srand(time(0));
-    network net = parse_network_cfg("cfg/net.cfg");
-    set_learning_network(&net, 0, 1, 0);
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = net.batch;
-    int i = 0;
-    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
-    list *plist = get_paths("/data/imagenet/cls.train.list");
-    char **paths = (char **)list_to_array(plist);
-    printf("%d\n", plist->size);
-    clock_t time;
-    data train, buffer;
-    pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
-    while(1){
-        i += 1;
-
-        time=clock();
-        client_update(net, address);
-        printf("Updated: %lf seconds\n", sec(clock()-time));
-
-        time=clock();
-        pthread_join(load_thread, 0);
-        train = buffer;
-        normalize_data_rows(train);
-        load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
-        printf("Loaded: %lf seconds\n", sec(clock()-time));
-        time=clock();
-
-        float loss = train_network(net, train);
-        avg_loss = avg_loss*.9 + loss*.1;
-        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
-        free_data(train);
-    }
-}
-*/
-
-void train_imagenet(char *cfgfile)
-{
-    float avg_loss = 1;
-    //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
-    srand(time(0));
-    network net = parse_network_cfg(cfgfile);
-    //test_learn_bias(*(convolutional_layer *)net.layers[1]);
-    //set_learning_network(&net, net.learning_rate, 0, net.decay);
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = 3072;
-    int i = net.seen/imgs;
-    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
-    list *plist = get_paths("/data/imagenet/cls.train.list");
-    char **paths = (char **)list_to_array(plist);
-    printf("%d\n", plist->size);
-    clock_t time;
-    pthread_t load_thread;
-    data train;
-    data buffer;
-    load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
-    while(1){
-        ++i;
-        time=clock();
-        pthread_join(load_thread, 0);
-        train = buffer;
-        //normalize_data_rows(train);
-        //translate_data_rows(train, -128);
-        //scale_data_rows(train, 1./128);
-        load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
-        printf("Loaded: %lf seconds\n", sec(clock()-time));
-        time=clock();
-        float loss = train_network(net, train);
-        net.seen += imgs;
-        avg_loss = avg_loss*.9 + loss*.1;
-        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
-        free_data(train);
-        if(i%100==0){
-            char buff[256];
-            sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i);
-            save_network(net, buff);
-        }
-    }
-}
-
-void validate_imagenet(char *filename)
-{
-    int i = 0;
-    network net = parse_network_cfg(filename);
-    srand(time(0));
-
-    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
-
-    list *plist = get_paths("/home/pjreddie/data/imagenet/cls.val.list");
-    char **paths = (char **)list_to_array(plist);
-    int m = plist->size;
-    free_list(plist);
-
-    clock_t time;
-    float avg_acc = 0;
-    float avg_top5 = 0;
-    int splits = 50;
-    int num = (i+1)*m/splits - i*m/splits;
-
-    data val, buffer;
-    pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
-    for(i = 1; i <= splits; ++i){
-        time=clock();
-
-        pthread_join(load_thread, 0);
-        val = buffer;
-        //normalize_data_rows(val);
-
-        num = (i+1)*m/splits - i*m/splits;
-        char **part = paths+(i*m/splits);
-        if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
-        printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
-
-        time=clock();
-        float *acc = network_accuracies(net, val);
-        avg_acc += acc[0];
-        avg_top5 += acc[1];
-        printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
-        free_data(val);
-    }
-}
-
-void test_detection(char *cfgfile)
-{
-    network net = parse_network_cfg(cfgfile);
-    set_batch_network(&net, 1);
-    srand(2222222);
-    clock_t time;
-    char filename[256];
-    while(1){
-        fgets(filename, 256, stdin);
-        strtok(filename, "\n");
-        image im = load_image_color(filename, 224, 224);
-        z_normalize_image(im);
-        printf("%d %d %d\n", im.h, im.w, im.c);
-        float *X = im.data;
-        time=clock();
-        float *predictions = network_predict(net, X);
-        printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
-        draw_detection(im, predictions, 7);
-        free_image(im);
-    }
-}
-
-void test_init(char *cfgfile)
-{
-    network net = parse_network_cfg(cfgfile);
-    set_batch_network(&net, 1);
-    srand(2222222);
-    int i = 0;
-    char *filename = "data/test.jpg";
-
-    image im = load_image_color(filename, 256, 256);
-    //z_normalize_image(im);
-    translate_image(im, -128);
-    scale_image(im, 1/128.);
-    float *X = im.data;
-    forward_network(net, X, 0, 1);
-    for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            image output = get_convolutional_image(layer);
-            int size = output.h*output.w*output.c;
-            float v = variance_array(layer.output, size);
-            float m = mean_array(layer.output, size);
-            printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v);
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            int size = layer.outputs;
-            float v = variance_array(layer.output, size);
-            float m = mean_array(layer.output, size);
-            printf("%d: Connected, mean: %f, variance %f\n", i, m, v);
-        }
-    }
-    free_image(im);
-}
-
-void test_imagenet()
-{
-    network net = parse_network_cfg("cfg/imagenet_test.cfg");
-    //imgs=1;
-    srand(2222222);
-    int i = 0;
-    char **names = get_labels("cfg/shortnames.txt");
-    clock_t time;
-    char filename[256];
-    int indexes[10];
-    while(1){
-        fgets(filename, 256, stdin);
-        strtok(filename, "\n");
-        image im = load_image_color(filename, 256, 256);
-        z_normalize_image(im);
-        printf("%d %d %d\n", im.h, im.w, im.c);
-        float *X = im.data;
-        time=clock();
-        float *predictions = network_predict(net, X);
-        top_predictions(net, 10, indexes);
-        printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
-        for(i = 0; i < 10; ++i){
-            int index = indexes[i];
-            printf("%s: %f\n", names[index], predictions[index]);
-        }
-        free_image(im);
-    }
-}
-
-void test_visualize(char *filename)
-{
-    network net = parse_network_cfg(filename);
-    visualize_network(net);
-    cvWaitKey(0);
-}
-
-void test_cifar10(char *cfgfile)
-{
-    network net = parse_network_cfg(cfgfile);
-    data test = load_cifar10_data("data/cifar10/test_batch.bin");
-    clock_t start = clock(), end;
-    float test_acc = network_accuracy_multi(net, test, 10);
-    end = clock();
-    printf("%f in %f Sec\n", test_acc, sec(end-start));
-    //visualize_network(net);
-    //cvWaitKey(0);
-}
-
-void train_cifar10(char *cfgfile)
-{
-    srand(555555);
-    srand(time(0));
-    network net = parse_network_cfg(cfgfile);
-    data test = load_cifar10_data("data/cifar10/test_batch.bin");
-    int count = 0;
-    int iters = 50000/net.batch;
-    data train = load_all_cifar10();
-    while(++count <= 10000){
-        clock_t time = clock();
-        float loss = train_network_sgd(net, train, iters);
-
-        if(count%10 == 0){
-            float test_acc = network_accuracy(net, test);
-            printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
-            char buff[256];
-            sprintf(buff, "/home/pjreddie/imagenet_backup/cifar10_%d.cfg", count);
-            save_network(net, buff);
-        }else{
-            printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
-        }
-
-    }
-    free_data(train);
-}
-
-void compare_nist(char *p1,char *p2)
-{
-    srand(222222);
-    network n1 = parse_network_cfg(p1);
-    network n2 = parse_network_cfg(p2);
-    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
-    normalize_data_rows(test);
-    compare_networks(n1, n2, test);
-}
-
-void test_nist(char *path)
-{
-    srand(222222);
-    network net = parse_network_cfg(path);
-    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
-    normalize_data_rows(test);
-    clock_t start = clock(), end;
-    float test_acc = network_accuracy(net, test);
-    end = clock();
-    printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
-}
-
-void train_nist(char *cfgfile)
-{
-    srand(222222);
-    // srand(time(0));
-    data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
-    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
-    network net = parse_network_cfg(cfgfile);
-    int count = 0;
-    int iters = 6000/net.batch + 1;
-    while(++count <= 100){
-        clock_t start = clock(), end;
-        normalize_data_rows(train);
-        normalize_data_rows(test);
-        float loss = train_network_sgd(net, train, iters);
-        float test_acc = 0;
-        if(count%1 == 0) test_acc = network_accuracy(net, test);
-        end = clock();
-        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
-    }
-    free_data(train);
-    free_data(test);
-    char buff[256];
-    sprintf(buff, "%s.trained", cfgfile);
-    save_network(net, buff);
-}
-
-/*
-void train_nist_distributed(char *address)
-{
-    srand(time(0));
-    network net = parse_network_cfg("cfg/nist.client");
-    data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
-    //data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
-    normalize_data_rows(train);
-    //normalize_data_rows(test);
-    int count = 0;
-    int iters = 50000/net.batch;
-    iters = 1000/net.batch + 1;
-    while(++count <= 2000){
-        clock_t start = clock(), end;
-        float loss = train_network_sgd(net, train, iters);
-        client_update(net, address);
-        end = clock();
-        //float test_acc = network_accuracy_gpu(net, test);
-        //float test_acc = 0;
-        printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
-    }
-}
-*/
-
-void test_ensemble()
-{
-    int i;
-    srand(888888);
-    data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
-    normalize_data_rows(d);
-    data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
-    normalize_data_rows(test);
-    data train = d;
-    //   data *split = split_data(d, 1, 10);
-    //   data train = split[0];
-    //   data test = split[1];
-    matrix prediction = make_matrix(test.y.rows, test.y.cols);
-    int n = 30;
+    int i, j;
+    int n = argc - 5;
     for(i = 0; i < n; ++i){
-        int count = 0;
-        float lr = .0005;
-        float momentum = .9;
-        float decay = .01;
-        network net = parse_network_cfg("nist.cfg");
-        while(++count <= 15){
-            float acc = train_network_sgd(net, train, train.X.rows);
-            printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
-            lr /= 2; 
+        weightfile = argv[i+5];   
+        load_weights(&net, weightfile);
+        for(j = 0; j < net.n; ++j){
+            layer l = net.layers[j];
+            layer out = sum.layers[j];
+            if(l.type == CONVOLUTIONAL){
+                int num = l.n*l.c*l.size*l.size;
+                axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
+                axpy_cpu(num, 1, l.filters, 1, out.filters, 1);
+            }
+            if(l.type == CONNECTED){
+                axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
+                axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1);
+            }
         }
-        matrix partial = network_predict_data(net, test);
-        float acc = matrix_topk_accuracy(test.y, partial,1);
-        printf("Model Accuracy: %lf\n", acc);
-        matrix_add_matrix(partial, prediction);
-        acc = matrix_topk_accuracy(test.y, prediction,1);
-        printf("Current Ensemble Accuracy: %lf\n", acc);
-        free_matrix(partial);
     }
-    float acc = matrix_topk_accuracy(test.y, prediction,1);
-    printf("Full Ensemble Accuracy: %lf\n", acc);
-}
-
-void visualize_cat()
-{
-    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
-    image im = load_image("data/cat.png", 0, 0);
-    printf("Processing %dx%d image\n", im.h, im.w);
-    resize_network(net, im.h, im.w, im.c);
-    forward_network(net, im.data, 0, 0);
-
-    visualize_network(net);
-    cvWaitKey(0);
-}
-
-void test_convolutional_layer()
-{
-    network net = parse_network_cfg("cfg/nist_conv.cfg");
-    int size = get_network_input_size(net);
-    float *in = calloc(size, sizeof(float));
-    int i;
-    for(i = 0; i < size; ++i) in[i] = rand_normal();
-    float *in_gpu = cuda_make_array(in, size);
-    convolutional_layer layer = *(convolutional_layer *)net.layers[0];
-    int out_size = convolutional_out_height(layer)*convolutional_out_width(layer)*layer.batch;
-    cuda_compare(layer.output_gpu, layer.output, out_size, "nothing");
-    cuda_compare(layer.biases_gpu, layer.biases, layer.n, "biases");
-    cuda_compare(layer.filters_gpu, layer.filters, layer.n*layer.size*layer.size*layer.c, "filters");
-    bias_output(layer);
-    bias_output_gpu(layer);
-    cuda_compare(layer.output_gpu, layer.output, out_size, "biased output");
-}
-
-void test_correct_nist()
-{
-    network net = parse_network_cfg("cfg/nist_conv.cfg");
-    srand(222222);
-    net = parse_network_cfg("cfg/nist_conv.cfg");
-    data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
-    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
-    normalize_data_rows(train);
-    normalize_data_rows(test);
-    int count = 0;
-    int iters = 1000/net.batch;
-
-    while(++count <= 5){
-        clock_t start = clock(), end;
-        float loss = train_network_sgd(net, train, iters);
-        end = clock();
-        float test_acc = network_accuracy(net, test);
-        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+    n = n+1;
+    for(j = 0; j < net.n; ++j){
+        layer l = sum.layers[j];
+        if(l.type == CONVOLUTIONAL){
+            int num = l.n*l.c*l.size*l.size;
+            scal_cpu(l.n, 1./n, l.biases, 1);
+            scal_cpu(num, 1./n, l.filters, 1);
+        }
+        if(l.type == CONNECTED){
+            scal_cpu(l.outputs, 1./n, l.biases, 1);
+            scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1);
+        }
     }
-    save_network(net, "cfg/nist_gpu.cfg");
+    save_weights(sum, outfile);
+}
 
+void operations(char *cfgfile)
+{
     gpu_index = -1;
-    count = 0;
-    srand(222222);
-     net = parse_network_cfg("cfg/nist_conv.cfg");
-    while(++count <= 5){
-        clock_t start = clock(), end;
-        float loss = train_network_sgd(net, train, iters);
-        end = clock();
-        float test_acc = network_accuracy(net, test);
-        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+    network net = parse_network_cfg(cfgfile);
+    int i;
+    long ops = 0;
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            ops += 2 * l.n * l.size*l.size*l.c * l.out_h*l.out_w;
+        } else if(l.type == CONNECTED){
+            ops += 2 * l.inputs * l.outputs;
+        }
     }
-    save_network(net, "cfg/nist_cpu.cfg");
+    printf("Floating Point Operations: %ld\n", ops);
 }
 
-void test_correct_alexnet()
+void partial(char *cfgfile, char *weightfile, char *outfile, int max)
 {
-    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
-    list *plist = get_paths("/data/imagenet/cls.train.list");
-    char **paths = (char **)list_to_array(plist);
-    printf("%d\n", plist->size);
-    clock_t time;
-    int count = 0;
-    network net;
-
-    srand(222222);
-    net = parse_network_cfg("cfg/net.cfg");
-    int imgs = net.batch;
-
-    count = 0;
-    while(++count <= 5){
-        time=clock();
-        data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
-        normalize_data_rows(train);
-        printf("Loaded: %lf seconds\n", sec(clock()-time));
-        time=clock();
-        float loss = train_network(net, train);
-        printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
-        free_data(train);
-    }
-
     gpu_index = -1;
-    count = 0;
-    srand(222222);
-    net = parse_network_cfg("cfg/net.cfg");
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    while(++count <= 5){
-        time=clock();
-        data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256);
-        normalize_data_rows(train);
-        printf("Loaded: %lf seconds\n", sec(clock()-time));
-        time=clock();
-        float loss = train_network(net, train);
-        printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
-        free_data(train);
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights_upto(&net, weightfile, max);
     }
+    *net.seen = 0;
+    save_weights_upto(net, outfile, max);
 }
 
-/*
-void run_server()
+void stacked(char *cfgfile, char *weightfile, char *outfile)
 {
-    srand(time(0));
-    network net = parse_network_cfg("cfg/net.cfg");
-    set_batch_network(&net, 1);
-    server_update(net);
-}
-
-void test_client()
-{
-    network net = parse_network_cfg("cfg/alexnet.client");
-    clock_t time=clock();
-    client_update(net, "localhost");
-    printf("1\n");
-    client_update(net, "localhost");
-    printf("2\n");
-    client_update(net, "localhost");
-    printf("3\n");
-    printf("Transfered: %lf seconds\n", sec(clock()-time));
-}
-*/
-
-void del_arg(int argc, char **argv, int index)
-{
-    int i;
-    for(i = index; i < argc-1; ++i) argv[i] = argv[i+1];
-}
-
-int find_arg(int argc, char* argv[], char *arg)
-{
-    int i;
-    for(i = 0; i < argc; ++i) if(0==strcmp(argv[i], arg)) {
-        del_arg(argc, argv, i);
-        return 1;
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
     }
-    return 0;
+    net.seen = 0;
+    save_weights_double(net, outfile);
 }
 
-int find_int_arg(int argc, char **argv, char *arg, int def)
+#include "convolutional_layer.h"
+void rescale_net(char *cfgfile, char *weightfile, char *outfile)
 {
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
     int i;
-    for(i = 0; i < argc-1; ++i){
-        if(0==strcmp(argv[i], arg)){
-            def = atoi(argv[i+1]);
-            del_arg(argc, argv, i);
-            del_arg(argc, argv, i);
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            rescale_filters(l, 2, -.5);
             break;
         }
     }
-    return def;
+    save_weights(net, outfile);
+}
+
+void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int i;
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            rgbgr_filters(l);
+            break;
+        }
+    }
+    save_weights(net, outfile);
+}
+
+void normalize_net(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int i, j;
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            net.layers[i].batch_normalize=1;
+            net.layers[i].scales = calloc(l.n, sizeof(float));
+            for(j = 0; j < l.n; ++j){
+                net.layers[i].scales[i] = 1;
+            }
+            net.layers[i].rolling_mean = calloc(l.n, sizeof(float));
+            net.layers[i].rolling_variance = calloc(l.n, sizeof(float));
+        }
+    }
+    save_weights(net, outfile);
+}
+
+void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    int i;
+    for (i = 0; i < net.n; ++i) {
+        layer l = net.layers[i];
+        if (l.type == CONVOLUTIONAL && l.batch_normalize) {
+            denormalize_convolutional_layer(l);
+            net.layers[i].batch_normalize=0;
+        }
+        if (l.type == CONNECTED && l.batch_normalize) {
+            denormalize_connected_layer(l);
+            net.layers[i].batch_normalize=0;
+        }
+        if (l.type == GRU && l.batch_normalize) {
+            denormalize_connected_layer(*l.input_z_layer);
+            denormalize_connected_layer(*l.input_r_layer);
+            denormalize_connected_layer(*l.input_h_layer);
+            denormalize_connected_layer(*l.state_z_layer);
+            denormalize_connected_layer(*l.state_r_layer);
+            denormalize_connected_layer(*l.state_h_layer);
+            l.input_z_layer->batch_normalize = 0;
+            l.input_r_layer->batch_normalize = 0;
+            l.input_h_layer->batch_normalize = 0;
+            l.state_z_layer->batch_normalize = 0;
+            l.state_r_layer->batch_normalize = 0;
+            l.state_h_layer->batch_normalize = 0;
+            net.layers[i].batch_normalize=0;
+        }
+    }
+    save_weights(net, outfile);
+}
+
+void visualize(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    visualize_network(net);
+#ifdef OPENCV
+    cvWaitKey(0);
+#endif
 }
 
 int main(int argc, char **argv)
 {
+    //test_resize("data/bad.jpg");
+    //test_box();
     //test_convolutional_layer();
     if(argc < 2){
         fprintf(stderr, "usage: %s <function>\n", argv[0]);
         return 0;
     }
     gpu_index = find_int_arg(argc, argv, "-i", 0);
-    if(find_arg(argc, argv, "-nogpu")) gpu_index = -1;
+    if(find_arg(argc, argv, "-nogpu")) {
+        gpu_index = -1;
+    }
 
 #ifndef GPU
     gpu_index = -1;
 #else
     if(gpu_index >= 0){
-        cudaSetDevice(gpu_index);
+        cudaError_t status = cudaSetDevice(gpu_index);
+        check_error(status);
     }
 #endif
 
-    if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
-    else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist();
-    else if(0==strcmp(argv[1], "test")) test_imagenet();
-    //else if(0==strcmp(argv[1], "server")) run_server();
-
-#ifdef GPU
-    else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
-#endif
-
-    else if(argc < 3){
-        fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]);
-        return 0;
+    if(0==strcmp(argv[1], "imagenet")){
+        run_imagenet(argc, argv);
+    } else if (0 == strcmp(argv[1], "average")){
+        average(argc, argv);
+    } else if (0 == strcmp(argv[1], "yolo")){
+        run_yolo(argc, argv);
+    } else if (0 == strcmp(argv[1], "cifar")){
+        run_cifar(argc, argv);
+    } else if (0 == strcmp(argv[1], "go")){
+        run_go(argc, argv);
+    } else if (0 == strcmp(argv[1], "rnn")){
+        run_char_rnn(argc, argv);
+    } else if (0 == strcmp(argv[1], "vid")){
+        run_vid_rnn(argc, argv);
+    } else if (0 == strcmp(argv[1], "coco")){
+        run_coco(argc, argv);
+    } else if (0 == strcmp(argv[1], "classifier")){
+        run_classifier(argc, argv);
+    } else if (0 == strcmp(argv[1], "art")){
+        run_art(argc, argv);
+    } else if (0 == strcmp(argv[1], "tag")){
+        run_tag(argc, argv);
+    } else if (0 == strcmp(argv[1], "compare")){
+        run_compare(argc, argv);
+    } else if (0 == strcmp(argv[1], "dice")){
+        run_dice(argc, argv);
+    } else if (0 == strcmp(argv[1], "writing")){
+        run_writing(argc, argv);
+    } else if (0 == strcmp(argv[1], "3d")){
+        composite_3d(argv[2], argv[3], argv[4]);
+    } else if (0 == strcmp(argv[1], "test")){
+        test_resize(argv[2]);
+    } else if (0 == strcmp(argv[1], "captcha")){
+        run_captcha(argc, argv);
+    } else if (0 == strcmp(argv[1], "nightmare")){
+        run_nightmare(argc, argv);
+    } else if (0 == strcmp(argv[1], "change")){
+        change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0);
+    } else if (0 == strcmp(argv[1], "rgbgr")){
+        rgbgr_net(argv[2], argv[3], argv[4]);
+    } else if (0 == strcmp(argv[1], "denormalize")){
+        denormalize_net(argv[2], argv[3], argv[4]);
+    } else if (0 == strcmp(argv[1], "normalize")){
+        normalize_net(argv[2], argv[3], argv[4]);
+    } else if (0 == strcmp(argv[1], "rescale")){
+        rescale_net(argv[2], argv[3], argv[4]);
+    } else if (0 == strcmp(argv[1], "ops")){
+        operations(argv[2]);
+    } else if (0 == strcmp(argv[1], "partial")){
+        partial(argv[2], argv[3], argv[4], atoi(argv[5]));
+    } else if (0 == strcmp(argv[1], "average")){
+        average(argc, argv);
+    } else if (0 == strcmp(argv[1], "stacked")){
+        stacked(argv[2], argv[3], argv[4]);
+    } else if (0 == strcmp(argv[1], "visualize")){
+        visualize(argv[2], (argc > 3) ? argv[3] : 0);
+    } else if (0 == strcmp(argv[1], "imtest")){
+        test_resize(argv[2]);
+    } else {
+        fprintf(stderr, "Not an option: %s\n", argv[1]);
     }
-    else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]);
-    else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]);
-    else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
-    else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]);
-    else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]);
-    //else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
-    else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]);
-    else if(0==strcmp(argv[1], "init")) test_init(argv[2]);
-    else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
-    else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
-    else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]);
-    else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]);
-    else if(argc < 4){
-        fprintf(stderr, "usage: %s <function> <filename> <filename>\n", argv[0]);
-        return 0;
-    }
-    else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]);
-    fprintf(stderr, "Success!\n");
     return 0;
 }
 

--
Gitblit v1.10.0